Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 1 of 19) | Pa | Location | | | | HR-1310
HR-13 | 31Q | | | HR-1310
HR-1
QY0 | 31Q | | | HR-131C
HR-13 | 31Q | | | HR-1440
HR-1 | 44Q | | |----------------------------|-------------|----------------------|-------------------|----------|------------------|------|----------|----------------------|------------------------|----------|----------|----------------|------------------|----------|----------------------|----------------------|-----------------|--|--------------| | | Number | | | | 13-Au | | | | | | | | 13-Au | | | | 23-Ji | | | | | le Date | | | | 13-Au | | | | 13-Au
1 - | | | | 13-Au
3 - | | | | 23-01 | | | | | epth (Feet) | | b | | | | . 0001 | | <u> </u> | | . 0001 | | | <u> </u> | - CCCI | D14 | Qual | >BKG | >SSSL | | Parameter | Units | BKGª | SSSL ^b | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Quai | / PRG | 2000L | | METALS | | 4.005.04 | 7.80E+03 | 1.59E+04 | | YES | YES | 1.28E+04 | | T | YES | 1.64E+04 | | YES | YES | 1.71E+04 | | YES | T YES | | Aluminum | mg/kg | | | | | 150 | 150 | 4.56E+00 | | YES | YES | ND | | 153 | IES | ND ND | | 1 1 2 3 | 123 | | Antimony | mg/kg | | | ND . | | | VEO | | J | TES | YES | 3.59E+00 | | | YES | 4.87E+00 | | | YES | | Arsenic | mg/kg | 1.83E+01 | | 3.57E+00 | | | YES | 4.00E+00
1.01E+02 | | | TES | 6.40E+01 | | | IEO | 5.18E+01 | | | 1 1 2 3 | | Barium | mg/kg | | 5.47E+02 | 2.02E+02 | · | VC0 | | | , | | ļ | 3.90E-01 | | | | ND | | | | | Beryllium | mg/kg | 8.60E-01 | | 1.04E+00 | J | YES | | 4.98E-01 | J | | | | J | | | ND ND | | <u> </u> | | | Cadmium | mg/kg | 2.20E-01 | | ND | | VE0 | | ND
0.545.00 | | <u> </u> | | ND
4.405+00 | | | | 1.40E+02 | | | | | Calcium | mg/kg | 6.37E+02
3.83E+01 | NA
0.005+04 | 6.72E+02 | | YES | | 2.51E+02 | | | | 1.12E+02 | | | | 1.40E+02
1.83E+01 | | | | | Chromium | mg/kg | | 1.47E+01 | | | | 1.90E+01 | | ļ | | 1.82E+01 | | | | 1.83E+01
4.42E+00 | | | + | | | Cobalt | mg/kg | 1.75E+01 | | 8.93E+00 | | | | 8.51E+00 | | - VEC | ļ | 3.74E+00 | | | | | J | ļ | - | | Copper | mg/kg | | 3.13E+02 | 8.76E+00 | | | | 2.06E+01 | | YES | | 7.07E+00 | | | E | 9.08E+00 | | ļ | | | Iron | mg/kg | 4.48E+04 | | 1.61E+04 | | | YES | 2.19E+04 | | | YES | 1.66E+04 | | | YES | 2.94E+04 | | | YES | | Lead | mg/kg | 3.85E+01 | | 3.13E+01 | | | | 1.13E+02 | | YES | | 8.69E+00 | | | | 2.03E+01 | J | ļ | | | Magnesium | mg/kg | 7.66E+02 | | 6.02E+02 | | | | 4.48E+02 | | | | 6.71E+02 | | | | 4.50E+02 | | | | | Manganese | mg/kg | | 3.63E+02 | 2.38E+03 | | YES | YES | 8.19E+02 | | | YES | 2.56E+02 | | | | 3.28E+02 | | 1,450 | | | Mercury | mg/kg | | | 4.90E-02 | J | | | 5.29E-02 | J | | | 5.56E-02 | J | | | 7.66E-02 | J | YES | | | Nickel | mg/kg | 1.29E+01 | | 9.13E+00 | | | | 5.69E+00 | | | | 6.03E+00 | | | | 5.86E+00 | | | | | Potassium | mg/kg | 7.11E+02 | | 6.45E+02 | | | | 7.55E+02 | | YES | | 4.90E+02 | | 1.000 | | 3.43E+02 | | | | | Selenium | mg/kg | | 3.91E+01 | 1.27E+00 | | YES | | 9.23E-01 | J | YES | | 8.01E-01 | J | YES | | 1.59E+00 | В | YES | | | Silver | mg/kg | 2.40E-01 | | ND | | | | | Sodium | mg/kg | 7.02E+02 | | 2.84E+01 | J | | | 3.05E+01 | J | | ļ | 3.15E+01 | J | | | ND | | | | | Thallium | mg/kg | 1.40E+00 | | ND | | | 1 | | Vanadium | mg/kg | | 5.31E+01 | 2.00E+01 | | | | 2.15E+01 | | | | 2.56E+01 | | | ļ | 2.87E+01 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 1.98E+01 | J | | | 1.67E+01 | J | | | 1.78E+01 | J | <u> </u> | <u> </u> | 1.49E+01 | J | | | | VOLATILE ORGANIC COMPOUN | | | | | | | | | | | | | | , | | | | , | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NA | | | | NR | | | | NR | | | | NR | | ļ | | | Acetone | mg/kg | NA | 7.76E+02 | NA | | | | NR | | | | NR | | | | NR | | ļ | | | Toluene | mg/kg | NA | 1.55E+03 | NA | | | | NR | | | | NR | | | | NR | | <u> </u> | | | p-Cymene | mg/kg | NA | 1.55E+03 | NA | | | | NR | | | | NR | | | <u> </u> | NR | | <u> </u> | | | SEMIVOLATILE ORGANIC COM | POUNDS | | | | | | | | | | | | | | | | | , | | | Fluoranthene | mg/kg | NA | 3.09E+02 | NA | | | | NR | | | | NR | | | | NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NA | | | | NR . | | <u> </u> | | NR | | <u> </u> | | NR | | | | | PESTICIDES | | | | | | | | | | | | | | | | · | | | · | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NA | | | | NR | | | | NR | | | | NR | | <u> </u> | <u> </u> | | Dieldrin | mg/kg | NA | 3.88E-02 | NA | | | | NR | | | | NR | | | | NR | | ļ | | | Heptachlor | mg/kg | NA | 1.40E-01 | NA | | | | NR | | | | NR | | | | NR | | <u> </u> | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NA | | | | NR | | | | NR | | | | NR | | ļ | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NA | | | | NR | | | | NR | | | | NR | | | <u></u> | | EXPLOSIVES | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | 2.80E-01 | J | | | ND | | | | ND | | | | ND | | | | Table 2-4 # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 2 of 19) | F
Samp
Sam | le Location
Parcel
le Number
iple Date
Depth (Feet) | | | | HR-1440
HR-1
QM0
23-Ju
2 - | 44Q
004
II-02 | | | HR-1440
HR-1
QM0
23-Ju | 44Q
006
I-02 | | | HR-1440
HR-1
QM0
24-Ju | 44Q
008
II-02 | | | HR-1440
HR-1
QM0
23-Ju | 44Q
011
ıl-02 | | |----------------------------|---|------------------|-------------------|----------|--|---------------------|--------|----------|---|--------------------|----------|----------|---------------------------------|---------------------|----------|-----------|---------------------------------|---------------------|-------------| | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | | METALS | 1 Omics 1 | DICO | 0002 | result | Quui | 1 - 5,10 | 1.0002 | recuit | - Guui | - 5.10 | 1 0002 | , .count | | - 5.1.0 | 1 000- | 1 1100011 | | | 1 000- | | Aluminum | ma/ka | 1.36E+04 | 7.80E+03 | 1.70E+04 | | YES | YES | 7.62E+03 | | | | 1.42E+04 | | YES | YES | 1.88E+04 | | YES | YES | | Antimony | ma/ka | 1.31E+00 | 3.11E+00 | ND | | | | | Arsenic | mg/kg | 1.83E+01 | 4.26E-01 | 5.66E+00 | | | YES | 3.20E+00 | | | YES | 3.48E+00 | | | YES | 3.72E+00 | | | YES | | Barium | mg/kg | 2.34E+02 | 5.47E+02 | 6.51E+01 | | | | 5.02E+01 | | | | 1.70E+02 | | | | 7.55E+01 | | | | | Bervllium | mg/kg 8.60E-01
mg/kg 2.20E-01 | | | | J | | | ND | | | | 9.93E-01 | J | YES | | ND | | | | | Cadmium | mg/kg 2.20E-01 | | | | | | | ND | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | 1.70E+00 | | YES | | ND | | | | | Calcium | mg/kg 6.37E+02 | | | | | | | 1.01E+04 | | YES | | 5.92E+02 | | | | 1.67E+02 | | | | | Chromium | mg/kg 3.83E+01 | | | | | | | 7.97E+00 | | | | 9.95E+00 | | | | 1.30E+01 | | | | | Cobalt | mg/kg 1.75E+01 | | | | J | | | 1.34E+00 | J | | | 6.30E+00 | J | | | 3.39E+00 | J | | | | Copper | mg/kg | 1.94E+01 | 3.13E+02 | 1.91E+01 | | | | 2.02E+01 | | YES | | 9.50E+00 | | | | 7.43E+00 | | | | | Iron | mg/kg | 4.48E+04 | 2.34E+03 | 2.06E+04 | | | YES | 1.14E+04 | | | YES | 1.19E+04 | | | YES | 1.41E+04 | | | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 1.74E+02 | J | YES | | 3.93E+01 | J | YES | | 1.47E+01 | J | | | 1.36E+01 | J | | | | Magnesium | mg/kg | 7.66E+02 | NA | 5.89E+02 | | | | 5.78E+03 | | YES | | 5.35E+02 | | | | 7.23E+02 | | | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 2.80E+02 | J | | | 1.56E+02 | J | | | 1.09E+03 | J | | YES | 1.73E+02 | J | | | | Mercury | mg/kg | 7.00E-02 | 2.33E+00 | 6.13E-02 | J | | | 3.28E-02 | J | | | 6.00E-02 | J | | | 7.18E-02 | J | YES | | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | 8.00E+00 | | | | 3.00E+00 | | | | 6.14E+00 | | | | 6.27E+00 | | | | | Potassium | mg/kg | 7.11E+02 | NA | 4.30E+02 | J | | | 8.04E+02 | | YES | | 3.84E+02 | J | | | 5.39E+02 | J | | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 9.02E-01 | В | YES | | ND | | | | 9.43E-01 | В | YES | | 9.60E-01 | В | YES | | | Silver | mg/kg | 2.40E-01 | 3.91E+01 | ND | | | | | Sodium | mg/kg | 7.02E+02 | NA | ND | | | | 2.64E+01 | J | | | 2.19E+01 | J | | | ND | | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 | ND | | | | | Vanadium | mg/kg | 6.49E+01 | 5.31E+01 | 2.77E+01 | | | | 1.06E+01 | | | | 1.43E+01 | | | | 2.24E+01 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 2.77E+01 | J | | | 1.89E+01 | J | | | 2.42E+02 | J | YES | | 2.26E+01 | J | | | | VOLATILE ORGANIC COMPO | UNDS | , | | | | | | | | | | | | | | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | NR | | | | 1.10E-02 | | | | NR | | | | | Acetone | mg/kg | NΑ | 7.76E+02 | NR | | | | NR | | | | 1.90E-01 | J | | | NR | | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | ND | | | <u> </u> | NR | | | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | ND | | | <u> </u> | NR | | | | | SEMIVOLATILE ORGANIC CO | MPOUNDS | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | NR | | | | ND | | | <u> </u> | NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | NR | | | <u> </u> | ND | | | | NR | | | | | PESTICIDES | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | NR | | | | ND | | | | NR | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | NR | | | | ND | | L | | NR | | ļ | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | NR | | | | 1.10E-03 | J
| | | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | | | ND | | | | NR | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | | | ND | | 1 | <u> </u> | NR | | <u> </u> | | | EXPLOSIVES | | | | | | γ | , | | | , | | | | | · | | | T | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND
ND | | | | 2.50E-01 | J | | | ND | | L | ļ | ND | | ļ | | | 2-Amino-4,6-dinitrotoluene | | | | | | | 1 | ND | | <u> </u> | 1 | ND | | <u> </u> | <u> </u> | ND | | <u></u> | | ### Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 3 of 19) | Sample L
Parc
Sample N
Sample
Sample | el
lumber
Date | | | | HR-1450
HR-14
QR00
22-Ju
1 - | 45Q
002
I-02 | | | HR-1450
HR-1
QR0
22-Ju
1 - | 45Q
004
I-02 | | | HR-1450
HR-1
QR0
22-Ju
2 - | 45Q
006
II-02 | | | HR-1450
HR-1
QR0
23-Ji
2 - | 45Q
008
II-02 | | |--|----------------------|----------|-------------------|----------|--|--------------------|----------|----------|--|--------------------|-------|----------|--|---------------------|----------|-------------|--|---------------------|-------| | Parameter | Units | BKGª | SSSL ^b | Result | Qual | -
>BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | | METALS | , Oille | 5.10 | 0002 | 7,000.0 | | | | | | | | | | l | · | | | 1 | | | Aluminum | mg/kg | 1.36E+04 | 7.80E+03 | 7.48E+03 | | | | 2.49E+04 | | YES | YES | 2.51E+04 | | YES | YES | 1.70E+04 | | YES | YES | | Antimony | ma/ka | 1.31E+00 | | ND | | | | | Arsenic | mg/kg | 1.83E+01 | 4.26E-01 | 2.06E+00 | | | YES | 1.29E+01 | | | YES | 4.67E+00 | | | YES | 5.33E+00 | | | YES | | Barium | mg/kg | 2.34E+02 | 5.47E+02 | 1.52E+02 | | | | 7.33E+01 | | | | 6.62E+01 | | | | 9.04E+01 | | | | | Beryllium | mg/kg | 8.60E-01 | 9.60É+00 | 5.36E-01 | J | | | 7.81E-01 | J | | | 4.32E-01 | J | | | 5.06E-01 | J | | | | Cadmium | mg/kg | 2.20E-01 | 6.25E+00 | ND | | | | | Calcium | mg/kg | 6.37E+02 | NA | 5.88E+02 | | | | 1.14E+02 | J | | | 1.32E+02 | | | | 1.33E+02 | | | | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | 5.20E+00 | | | | 2.57E+01 | | | YES | 1.58E+01 | | | | 1.46E+01 | | | | | Cobalt | mg/kg | 1.75E+01 | 4.68E+02 | 4.69E+00 | | | | 9.05E+00 | | | | 3.05E+00 | | | | 4.52E+00 | | | | | Copper | mg/kg | 1.94E+01 | 3.13E+02 | 5.43E+00 | | | | 1.19E+01 | | | | 1.04E+01 | | | | 8.54E+00 | | | | | Iron | mg/kg | 4.48E+04 | 2.34E+03 | 6.59E+03 | | | YES | 6.08E+04 | | YES | YES | 1.78E+04 | | | YES | 2.13E+04 | | | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 3.94E+01 | | YES | | 1.87E+01 | | | | 9.45E+00 | | | | 1.11E+01 | | | | | Magnesium | mg/kg | 7.66E+02 | NA | 4.77E+02 | | | | 6.73E+02 | | | | 9.84E+02 | | YES | | 7.48E+02 | | | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 6.71E+02 | | | YES | 2.64E+02 | | | | 9.01E+01 | | | | 2.98E+02 | | | | | Mercury | mg/kg | 7.00E-02 | 2.33E+00 | 8.23E-02 | J | YES | | 7.39E-02 | J | YES | | 8.31E-02 | J | YES | | 5.55E-02 | J | | | | Nickel | mg/kg | | | 4.26E+00 | | | | 6.23E+00 | | | | 7.96E+00 | | | | 7.67E+00 | | | | | Potassium | mg/kg | 7.11E+02 | | 1.04E+03 | | YES | | 6.24E+02 | | | | 9.34E+02 | | YES | | 1.30E+03 | | YES | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 8.10E-01 | J | YES | | 3.75E+00 | | YES | | 1.34E+00 | | YES | | 1.37E+00 | | YES | | | Silver | mg/kg | 2.40E-01 | 3.91E+01 | ND | | | | | Sodium | mg/kg | 7.02E+02 | NA | ND | | | | 2.59E+01 | | | | 2.40E+01 | J | | | 2.36E+01 | J | | | | Thallium | mg/kg | 1.40E+00 | | ND | | | | 1.00E+00 | J | | YES | ND | | | | ND | | | | | Vanadium | mg/kg | 6.49E+01 | | 7.97E+00 | | | | 3.89E+01 | | | | 2.61E+01 | | | | 2.40E+01 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 1.23E+01 | | | | 3.09E+01 | | | | 2.61E+01 | | | <u></u> | 1.68E+01 | | ļ | | | VOLATILE ORGANIC COMPOUNI | DS | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | , | NR | | | | NR | | | | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | NR | | | | NR | | | | NR | | <u> </u> | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | NR | | <u> </u> | <u> </u> | NR | | İ | | | SEMIVOLATILE ORGANIC COMP | OUNDS | | | | | | | | | | | | | | | | | | | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | NR | | | | NR | | | <u> </u> | NR | | | | | PESTICIDES | | | | | | | | | | | | | | | | | | , | | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | NR | | | | NR | | | | NR | | ļ | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | NR | | | | NR | | | <u> </u> | NR | | ļ | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | NR | | | | NR | | 1 | | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | | | NR | | | 1 | NR | | ļ | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | l | L | NR | l | <u> </u> | <u> </u> | NR | | L | | | EXPLOSIVES | | | | | | | | | | , | | | | · | | ······ | | · | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | ND | | | | ND | | | | ND | | ļ | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | <u> </u> | ND | | L | | ND | <u> </u> | l | | ND | | <u> </u> | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 4 of 19) | Parc
Sample N | Sample Location Parcel Sample Number Sample Date Sample Depth (Feet) Parameter Units BKG ^a S | | | | | I-MW02
45Q
011
I-02 | | | HR-1460
HR-1
RK00
1-Aug | 46Q
002 | | | HR-1460
HR-1
RK0
6-Au | 46Q
004
g-02 | | | RK0
1-Au | 146Q
0006
ig-02 | | |----------------------------|---|------------------|-------------------|-----------|------|------------------------------|----------|----------------|----------------------------------|------------|----------|----------------------|--------------------------------|--------------------|--------------|----------------------|-------------|-----------------------|--| | | , ` ` | | | | 3 - | | | | 1 - | | r | | 2 - | | | | 2 - | | | | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | | METALS | | 1 | - aa- aa | 1 005 011 | | \/E0 | 1/50 | 7 005 00 | | | | 0.705:00 | · | | YES | 9.28E+03 | | Т | TYES | | Aluminum | mg/kg | | 7.80E+03 | 1.69E+04 | | YES | YES | 7.38E+03 | | | | 9.72E+03 | | | 1 YES | 9.28E+03 | | | YES | | Antimony | mg/kg | | 3.11E+00 | ND ND | | | \/E0 | ND | | | YES | ND
3.33E+00 | ļ | | YES | 2.54E+00 | | | YES | | Arsenic | mg/kg | | 4.26E-01 | 1.47E+00 | | | YES | 5.36E+00 | | | YES | 6.28E+01 | ļ | | YES | 1.33E+02 | | | YES | | Barium | mg/kg | | 5.47E+02 | 4.85E+01 | | | | 1.98E+02 | | ļ | | | J | | ļ | 6.79E-01 | | | | | Beryllium | mg/kg | 8.60E-01 | 9.60E+00 | ND | | | | 8.08E-01 | J | | | ND | | | | ND | J | | | | Cadmium | mg/kg | ļ | 6.25E+00 | ND | | | | ND
4.405.00 | | | | ND
0.755 : 00 | ļ | | ļ | 2.33E+02 | | | | | Calcium | mg/kg | | NA | 7.31E+01 |) | | | 1.48E+02 | | | | 3.75E+02 | | ļ | | 5.50E+00 | | | | | Chromium | mg/kg | | 2.32E+01 | 1.46E+01 | | | | 1.65E+01 | | 1/50 | | 1.02E+01 | J | | | 3.96E+00 | | | — | | Cobalt | mg/kg | 1.75E+01 | 4.68E+02 | 1.62E+00 | | | | 2.12E+01 | J | YES | | 2.39E+00 | | ļ | ļ | | J | | | | Copper | mg/kg | | 3.13E+02 | 8.23E+00 | | | 1/50 | 1.57E+01 | | | VE0 | 7.81E+00 | | ļ | VE0. | 7.51E+00 | | | YES | | Iron | mg/kg | | 2.34E+03 | 5.74E+03 | | | YES | 2.42E+04 | | 1/50 | YES | 1.30E+04 | | ļ | YES | 7.61E+03
2.27E+01 | | | 1 IES | | Lead | mg/kg | | | 9.69E+00 | | | | 4.03E+01 | | YES | | 1.61E+01 | | | ļ | 3.41E+02 | | | ├ ── | | Magnesium | mg/kg | | NA | 4.79E+02 | | | | 2.61E+02 | | \/F0 | | 4.16E+02 | | | | 9.45E+02 | | | YES | | Manganese | mg/kg | | | 6.30E+01 | | | | 1.98E+03 | | YES | YES | 7.21E+01
4.83E-02 | J | | ļ | 9.45E+02
5.87E-02 | | | YES | | Mercury | mg/kg | | 2.33E+00 | 5.16E-02 | J | | | 3.73E-02 | J | | | 4.83E-02
3.81E+00 | J | | ļ | 3.26E+00 | J | | | | Nickel | mg/kg | | 1.54E+02 | 4.16E+00 | | | | 9.47E+00 | | | | 3.81E+00
2.46E+02 | | ļ | ļ | 3.26E+00
3.23E+02 | 1 | | | | Potassium | mg/kg | | NA | 5.70E+02 | | | | 3.26E+02 | | \/F0 | | 5.58E-01 | | YES | ļ | 9.45E-01 | | YES | | | Selenium | mg/kg | | 3.91E+01 | ND | | | | 1.45E+00 | В | YES | | | J | YES | ļ | 9.45E-01
ND | В | 1 IES | | | Silver | mg/kg | 2.40E-01 | 3.91E+01 | ND | | | | ND | | | | ND
2.62E+01 | | | ļ | ND | | + | | | Sodium | mg/kg | | NA 5 005 01 | ND | | | | ND | | | VE0. | | J | | | ND
ND | | | | | Thallium | mg/kg | | | ND | | | | 8.58E-01 | J | | YES | ND
1.60E+01 | | | ļ | 8.50E+00 | | | | | Vanadium | mg/kg | | | | | | | 1.75E+01 | | | ļ | 1.60E+01
1.63E+01 | | <u> </u> | | 1.21E+01 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 1.60E+01 | | L | | 2.41E+01 | | L | l | 1.63E+01 | J | L | J | 1.21E+01 | L | <u> </u> | | | VOLATILE ORGANIC COMPOUND | | , | 1 005 00 | | | | | | | 1 | ı | NR | | | T | NR NR | | т | T | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | NR | | | | NR
NR | |
ļ | | NR
NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | NR | | | | | | | ļ | NR
NR | | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | NR
NR | | ļ | ļ | NR
NR | | + | 1 | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | L | NR | | L | <u> </u> | I NK | l | L | <u> </u> | INK | L | J | | | SEMIVOLATILE ORGANIC COMP | | | | | | | | | | Υ | | N.S. | | T | т | NR NR | | T | T | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | NR | | | | NR
NR | | | | NR
NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | l | NR | | | | I NK | | | <u> </u> | INF | L | | | | PESTICIDES | | | 4 705 . 00 | - tip T | | | | l ND | | | | NR | | T | 1 | T NR | | T | | | 4,4'-DDT | mg/kg | NA
NA | 1.79E+00 | NR | | | | NR | | | | | - | | | NR
NR | | + | + | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | NR
NR | | | | NR
NR | | | | NR
NR | | + | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | | | | | NR
NR | | | | NR
NR | | + | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | ļ | | NR
NR | | | | NR
NR | | + | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | L | | NR | | L | l | INK | L | L | 1 | INK | | | | | EXPLOSIVES | | | 0.075.01 | ND 1 | | г | г | I ND | | | 1 | ND | Γ | | т- | ND | r | | Т | | 2,4-Dinitrotoluene | mg/kg | NA
NA | 9.27E-01 | ND
ND | | | | ND
ND | | | - | ND
ND | | | - | ND ND | | + | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA NA | 4.64E-01 | עא | | <u> </u> | <u> </u> | ן אט | | 1 | <u> </u> | LIND | <u>L</u> | 1 | | T IND | L | | | ### Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 5 of 19) | | Location | | | | HR-1460 | | | | HR-1460 | | | | HR-1460
HR-1 | | | | HR-1460
HR-1 | | | |----------------------------|--------------|------------------|-------------------|----------|---------|------|-------|----------|---------|------|----------|----------|-----------------|------|-------|----------|-----------------|----------|-----------| | 1 | e Number | | | | RKO | | | | RK0 | | | | RK0 | | | | RK0 | | | | | ole Date | | | | 1-Aug | 1-02 | | | 1-Aug | 1-02 | | | 6-Au | g-02 | | | 6-Au | g-02 | | | | Depth (Feet) | | | | 2 - | | | | 3 - | | | | 1 - | 2 | | | 2 - | 2.5 | | | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | | METALS | Aluminum | mg/kg | 1.36E+04 | 7.80E+03 | 1.45E+04 | | YES | YES | 1.63E+04 | | YES | YES | 1.08E+04 | | | YES | 1.96E+04 | | YES | YES | | Antimony | mg/kg | 1.31E+00 | 3.11E+00 | ND | | | | | Arsenic | mg/kg | 1.83E+01 | 4.26E-01 | 3.66E+00 | | | YES | 5.04E+00 | | | YES | 3.18E+00 | | | YES | 7.39E+00 | | | YES | | Barium | mg/kg | 2.34E+02 | 5.47E+02 | 9.82E+01 | J | | | 3.59E+01 | J | | | 1.25E+02 | J | | | 7.51E+01 | | | | | Beryllium | mg/kg | | 9.60E+00 | 6.96E-01 | J | | | 4.12E-01 | j | | | 1.01E+00 | J | YES | | 1.00E+00 | J | YES | | | Cadmium | mg/kg | | 6.25E+00 | ND | | | | | Calcium | mg/kg | 6.37E+02 | NA | 1.54E+02 | | | | 1.01E+02 | J | | | 1.49E+02 | | | | 1.76E+02 | | | | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | 1.03E+01 | | | | 1.52E+01 | | | | 9.93E+00 | J | | | 2.01E+01 | J | | | | Cobalt | mg/kg | 1.75E+01 | | | J | | | 3.38E+00 | J | | | 6.39E+00 | | | | 7.17E+00 | | | | | Copper | mg/kg | 1.94E+01 | 3.13E+02 | 1.15E+01 | | | | 8.38E+00 | | | | 2.04E+01 | | YES | | 1.67E+01 | | | | | Iron | mg/kg | 4.48E+04 | 2.34E+03 | 1.52E+04 | | | YES | 3.35E+04 | | | YES | 1.35E+04 | | | YES | 3.84E+04 | | | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 6.79E+01 | | YES | | 2.28E+01 | | | | 1.97E+02 | | YES | | 4.32E+01 | | YES | | | Magnesium | mg/kg | 7.66E+02 | NA | 5.67E+02 | | | | 3.27E+02 | | | | 4.45E+02 | | | | 5.69E+02 | | | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 4.46E+02 | | | YES | 4.17E+02 | | | YES | 7.38E+02 | | | YES | 7.50E+02 | J | | YES | | Mercury | mg/kg | 7.00E-02 | 2.33E+00 | 5.02E-02 | J | | | 6.02E-02 | J | | | 3.66E-02 | J | | | 1.19E-01 | | YES | | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | 6.42E+00 | | | | 5.88E+00 | | | | 4.78E+00 | | | | 1.02E+01 | | | <u> </u> | | Potassium | mg/kg | 7.11E+02 | NA | 4.41E+02 | J | | | 2.74E+02 | J | | | 5.31E+02 | J | | | 5.93E+02 | | | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 1.10E+00 | В | YES | | 1.56E+00 | В | YES | | 7.60E-01 | J | YES | | 1.92E+00 | | YES | | | Silver | mg/kg | | 3.91E+01 | ND | | | | ND | | | | ND | | | | 1.24E+00 | | YES | | | Sodium | mg/kg | 7.02E+02 | NA | ND | | | | ND | | | | 2.43E+01 | J | | | 2.64E+01 | | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 | ND | | | | ND | | | | ND | | | | 1.54E+00 | J | YES | YES | | Vanadium | mg/kg | 6.49E+01 | | 1.71E+01 | | | | 3.25E+01 | | | | 1.28E+01 | | | | 3.78E+01 | | <u> </u> | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 1.89E+01 | | | | 1.68E+01 | | | | 1.44E+01 | J | | | 4.33E+01 | J | YES | | | VOLATILE ORGANIC COMPOL | INDS | | | | | | | | | | | | | | ····· | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | 1.90E-02 | | | | NR | | | | NR | | | | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | 3.30E-01 | J | | | NR | | | | NR | | | | NR | | | | | Toluene | mg/kg | NA | 1.55E+03 | ND | | | | NR | | | | NR | | | | NR | | | | | p-Cymene | mg/kg | NA | 1.55E+03 | ND | | | | NR | | | <u> </u> | NR | | | | NR | | <u> </u> | | | SEMIVOLATILE ORGANIC COM | MPOUNDS | Fluoranthene | mg/kg | NA | 3.09E+02 | ND | | | | | | | | | | | | | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | ND | | | | NR | | | | NR | | | | NR | | | L | | PESTICIDES | | | | | | | | | | | | | | | | | | · | | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | ND | | | | NR | | | | NR | | | | NR | | ļ | <u> </u> | | Dieldrin | mg/kg | NA | 3.88E-02 | ND | | | | NR | | | | NR | | | | NR | | | <u> </u> | | Heptachlor | mg/kg | NA | 1.40E-01 | ND | | | | NR | | | | NR | | | | NR | | | <u> </u> | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | ND | | | | NR | | | | NR | | | | NR | | ļ | ' | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | ND | | | | NR | | | | NR | | L | L | NR | l | L | L | | EXPLOSIVES | | | | | | | | | | | | | | · | | | | | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | ND | | L | <u> </u> | ND | | L | | ND | | | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 6 of 19) | Parc
Sample N
Sample | Sample Location Parcel Sample Number Sample Date Sample Depth (Feet) Parameter Units BKG ^a | | | | | Q-GP08
46Q
017
g-02 | | | HR-1460
HR-1
RK0
31-Ju | 46Q
019
il-02 | | | HR-1460
HR-1
RK0
31-Ju | 46Q
021
il-02 | | | HR-1460
HR-1
RK0
5-Au | 46Q
024
g-02 | | |----------------------------|---|----------|-------------------|----------|------|------------------------------|---------|---|---------------------------------|---------------------------------------|----------|----------|---------------------------------|---------------------|----------|----------|--------------------------------|--------------------|----------| | <u> </u> | , | | | | 2 - | | | ļ | 3 - | | | | 2 - | | | | 1 - | | | | | Units | BKG* | SSSL ^b | Result | Qual | >BKG | >SSSL | | METALS | | | | | | | | , | | | | , | | | | | | | | | Aluminum | mg/kg | 1.36E+04 | | | | YES | YES | 2.82E+04 | | YES | YES | 1.74E+04 | | YES | YES | 1.37E+04 | | YES | YES | | Antimony | mg/kg | | 3.11E+00 | | J | YES | YES | ND | | | | ND | | | | ND | | | | | Arsenic | mg/kg | 1.83E+01 | 4.26E-01 | 8.14E+00 | | | YES | 4.70E+00 | | | YES | 3.36E+00 | | | YES | 2.73E+00 | | | YES | | Barium | mg/kg | | | | J | | | 3.69E+01 | <u>J</u> | | | 5.46E+01 | | | | 8.42E+01 | | | | | Beryllium | mg/kg | | 9.60E+00 | 8.27E-01 | J | | | ND | | | | 3.72E-01 | J | | | 4.33E-01 | J | | | | Cadmium | mg/kg | | 6.25E+00 | ND | | | <u> </u> | | Calcium | mg/kg | 6.37E+02 | NA | 5.31E+01 | J | | | 5.34E+01 | J | | | 8.21E+01 | J | | | 2.47E+02 | | | | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | 1.46E+01 | J | | | 2.21E+01 | | | | 1.10E+01 | | | | 1.26E+01 | J | | | | Cobalt | mg/kg | 1.75E+01 | 4.68E+02 | 1.56E+01 | | | | 1.71E+00 | J | | | 4.79E+00 | J | | | 5.03E+00 | | | | | Copper | mg/kg | | 3.13E+02 | 1.38E+01 | | | | 1.01E+01 | | | | 6.11E+00 | | | | 5.43E+00 | | | | | Iron | mg/kg | | 2.34E+03 | 4.59E+04 | | YES | YES | 2.76E+04 | | | YES | 1.50E+04 | | | YES | 1.13E+04 | | | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 1.90E+01 | | | | 1.31E+01 | | | | 1.38E+01 | | | | 1.35E+01 | | | | | Magnesium | mg/kg | 7.66E+02 | NA | 4.66E+02 | | | | 4.47E+02 | | | | 4.98E+02 | | | | 5.20E+02 | | | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 4.05E+02 | J | | YES | 4.29E+01 | | | | 9.93E+01 | | | | 2.27E+02 | | | | | Mercury | mg/kg | 7.00E-02 | 2.33E+00 | 5.23E-02 | J | | | 3.35E-01 | | YES | | 1.61E-01 | | YES | | 5.93E-02 | J | | | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | 5.96E+00 | | | | 4.64E+00 | | | | 4.64E+00 | | | | 4.61E+00 | | | | | Potassium | mg/kg | 7.11E+02 | NA | 5.24E+02 | J | | | 3.52E+02 | J | | | 4.24E+02 | J | | | 4.33E+02 | J | | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 2.08E+00 | | YES | | 1.62E+00 | В | YES | | 1.34E+00 | В | YES | | ND | | | | | Silver | mg/kg | 2.40E-01 | 3.91E+01 | ND | | | | | Sodium | mg/kg | 7.02E+02 | NA | 2.89E+01 | J | | | ND | | | | ND | | | | 3.21E+01 | J | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 |
1.63E+00 | J | YES | YES | ND | | | | ND | | | | ND | | | | | Vanadium | mg/kg | 6.49E+01 | 5.31E+01 | 3.10E+01 | | | | 3.97E+01 | | | | 2.06E+01 | | | | 1.78E+01 | | | | | Zinc | ma/ka | 3.49E+01 | 2.34E+03 | 2.38E+01 | J | | | 1.88E+01 | | | | 1.83E+01 | | | | 1.51E+01 | j | | | | VOLATILE ORGANIC COMPOUND | | | | | | | | | | | | | | A | 1 | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR I | | | | NR | | | | 5.80E-03 | J | | | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | NR | | | | 1.10E-01 | J | | 1 | NR | | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | ND | | | | NR | | | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | ND | | | | NR | | | | | SEMIVOLATILE ORGANIC COMP | | | | 1 | | L | | d | | 1 | | L | | L | | | | | | | Fluoranthene | mg/kg | NA | 3.09E+02 | | | l | | | | | | ND | | T | | | | | | | N-Nitrosodiphenylamine | mg/kg | NA. | 1.29E+02 | NR | | | | NR | | | | ND | | | | NR | | | | | PESTICIDES | | | | | | | · | I, | | | | | | | 4 | | | <u> </u> | | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | NR | | | | ND | | | | NR | | | | | Dieldrin | mg/kg | NA NA | 3.88E-02 | NR | | | | NR | | | | ND | | | | NR | | | | | Heptachlor | mg/kg | NA. | 1.40E-01 | NR | | | | NR | | | | ND | | | | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | | | ND | | | | NR | | | | | gamma-Chlordane | mg/kg | NA NA | 1.69E+00 | NR | | | | NR | | | | ND | | | | NR | | | | | EXPLOSIVES | ı mama | .,,, | | | | L | L | | L | L | L | | | | • | | | • | | | 2.4-Dinitrotoluene | ma/ka | NA | 9.27E-01 | ND | | | I | ND | | Ι | | ND | | 1 | | ND I | | | | | 2-Amino-4.6-dinitrotoluene | mg/kg | NA NA | 4.64E-01 | ND | | | | ND | | · · · · · · · · · · · · · · · · · · · | | ND | | | | ND | | | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 7 of 19) | Parc
Sample N
Sample | Sample Location Parcel Sample Number Sample Date Sample Depth (Feet) Parameter Units BKG ^a S | | | | | -MW01
46Q
026
1-02 | | | HR-1460
HR-1
RK0
31-Ju | 46Q
028
II-02 | | | HR-1470
HR-1
QN0
24-Ju
1.5 | 47Q
002
II-02 | | | QN0
25-J | 47Q | | |----------------------------|---|------------------|-------------------|----------------|-------------|-----------------------------|-------|----------|---------------------------------|---------------------------------------|-------|----------|--|---------------------|-------|----------|-------------|----------|-------| | | | DKC _a | SSSL ^b | Result | 1 -
Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | | METALS | Units | BNG | 333L | Result | Quai | >BNG | /333L | Result | Quai | /DNG | 7000L | Result | Quai | > DI(() | -000L | Result | Quui | 1 - 0110 | FOOOL | | Aluminum | ma/ka | 1 36E+04 | 7.80E+03 | 1.38E+04 | | YES | YES | 1.21E+04 | | 1 | YES | 1.00E+04 | | T | YES | 1.07E+04 | | T | YES | | Antimony | ma/ka | | 3.11E+00 | ND ND | | 120 | 120 | ND ND | | | 120 | ND ND | | | | ND | | <u> </u> | | | Arsenic | mg/kg | 1.83E+01 | | | | | YES | 2.69E+00 | | | YES | 2.95E+00 | | | YES | 3.31E+00 | | | YES | | Barium | mg/kg | | 5.47E+02 | 8.84E+01 | 1 | | 110 | 4.47E+01 | J | · · · · · · · · · · · · · · · · · · · | | 8.71E+01 | | | | 6.15E+01 | | | | | Beryllium | mg/kg | 8.60E-01 | 9.60E+00 | 6.57E-01 | <u></u> | | | ND | <u> </u> | | | 3.87E-01 | J | | | ND | | | | | Cadmium | mg/kg | 2.20E-01 | 6.25E+00 | ND ND | | | | ND | | | | ND | | | | ND | | | | | Calcium | mg/kg | 6.37E+02 | NA NA | 1.70E+02 | | | | 5.84E+01 | .1 | | | 1.83E+02 | | | | 1.96E+02 | | | | | Chromium | mg/kg | | 2.32E+01 | 2.44E+02 | | YES | YES | 8.27E+00 | | | | 7.31E+00 | | | | 1.09E+01 | | 1 | | | Cobalt | mg/kg | | | 9.64E+00 | | 10 | | 3.35E+00 | | | | 4.79E+00 | | | | 2.52E+00 | | | | | Copper | mg/kg | | 3.13E+02 | | , | | | 4.78E+00 | | | | 3.39E+00 | | | | 4.42E+00 | | | | | Iron | mg/kg | 4.48E+04 | | 1.95E+04 | | | YES | 1.22E+04 | | | YES | 8.66E+03 | | | YES | 1.54E+04 | | | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 1.45E+01 | | | | 8.99E+00 | | | | 8.43E+00 | | | | 9.96E+00 | | | | | Magnesium | ma/ka | 7.66E+02 | NA NA | 3.85E+02 | | | | 4.16E+02 | | | | 3.83E+02 | | | | 4.34E+02 | | | | | Manganese | mg/kg | | 3.63E+02 | | | YES | YES | 9.33E+01 | | | | 2.79E+02 | | | | 7.75E+01 | | | | | Mercury | ma/ka | | 2.33E+00 | | I | | 120 | 7.09E-02 | J | YES | | 5.23E-02 | J | | 1 | 4.04E-02 | J | | | | Nickel | mg/kg | | | | | YES | | 4.03E+00 | <u> </u> | 1 | | 3.93E+00 | | | | 4.16E+00 | | | | | Potassium | mg/kg | 7.11E+02 | NA | 4.80E+02 | 1 | ,0 | | 3.50E+02 | J | | | 4.87E+02 | J | | | 4.83E+02 | J | | | | Selenium | ma/ka | | 3.91E+01 | 1.25E+00 I | | YES | | 1.38E+00 | | YES | | ND | | | | 5.89E-01 | В | YES | | | Silver | mg/kg | 2.40E-01 | | ND ND | | | | ND | | | | ND | | | | ND | | 1 | | | Sodium | mg/kg | 7.02E+02 | NA NA | ND | | | | | Thallium | mg/kg | 1.40E+00 | | ND | | | | | Vanadium | mg/kg | | 5.31E+01 | 2.22E+01 | | | | 1.56E+01 | | | | 1.09E+01 | | | | 1.42E+01 | | | | | Zinc | mg/kg | | | 1.61E+01 | | | | 2.84E+01 | | | | 9.84E+00 | J | | | 1.15E+01 | J | | | | VOLATILE ORGANIC COMPOUND | | 0.102 01 | 2.0 (2 00) | | | | | | | | | | | | | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | | Toluene | mg/kg | NA NA | 1.55E+03 | NR | | | | | p-Cymene | ma/ka | NA | 1.55E+03 | NR | | | | | SEMIVOLATILE ORGANIC COMP | | | | | | | L | | | | | | | | 1 | | | | | | Fluoranthene | mg/kg | NA | 3.09E+02 | | | | | | | | | | | | | NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | | PESTICIDES | | | | السيستنين نبيب | | | | | | | | | | | | | | | | | 4.4'-DDT | mg/kg | NA | 1.79E+00 | NR I | | | | NR | | | | NR | | | 7 | NR | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | | Heptachlor | mg/kg | NA. | 1.40E-01 | NR | | | | NR | | | | NR | AMWANIA TO THE REAL PROPERTY OF THE PARTY | | | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | | EXPLOSIVES | 2.4-Dinitrotoluene | ma/ka | NA | 9.27E-01 | ND | | | | ND | | | | ND | | | | ND | | 1 | | | 2-Amino-4.6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | #### Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 8 of 19) | Sample I | | | | | HR-1470 | | | | HR-1480 | | | | HR-1480 | | | I | HR-1480 | | | |----------------------------|-------|------------------|-------------------|----------|---------------|--|--------|----------------|---------------|------|---------|----------------------|--------------|----------|-------|----------------------|--------------|------|--------------| | Par | | | | | HR-1 | | | | HR-1 | | | ļ | HR-1 | | | | HR-1 | | | | Sample | | | | | QN00
24-Ju | | | | QS00
23-Ju | | | | QS0
23-Ju | | | | QS0
23-Ju | | | | Sample | | | | | 24-Ju
1.5 | | | | 23-Ju
1 - | | | | 23-31 | | | | 23-JI
1 - | | | | Sample De | · | 51108 | 0001 | | | | . 0001 | | | · | . 0001 | | | >BKG | >SSSL | - B | - | >BKG | 1 . 0001 | | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >555L | Result | Qual | >BKG | >SSSL | | METALS | | 4.005.04 | 7.80E+03 | 4.025.04 | | | YES | 1.47E+04 | | YES | YES | 2.40E+04 | | YES | YES | 1.49E+04 | | YES | YES | | Aluminum | mg/kg | 1.36E+04 | | ND | | | 150 | 5.08E+00 | | YES | YES | ND | | 150 | TEO | ND | |
153 | TES | | Antimony | mg/kg | 1.83E+01 | | 2.95E+00 | | | YES | 3.64E+00 | J | YES | YES | 4.99E+00 | | | YES | 4.31E+00 | | | YES | | Arsenic | mg/kg | | | | | | IEO | 1.41E+02 | | | 150 | 1.04E+02 | | | TEO | 1.49E+02 | | | 160 | | Barium | mg/kg | | 5.47E+02 | 5.94E+01 | | | | 7.17E-01 | | | | 5.48E-01 | | | | 6.20E-01 | | | | | Beryllium | mg/kg | 8.60E-01 | | ND
ND | | | | | J | | | ND | J | | | ND | J | | | | Cadmium | mg/kg | | 6.25E+00 | 1.07E+02 | | | | ND
2.71E+02 | | | | 1.77E+02 | | | | 6.03E+02 | | | | | Calcium | mg/kg | 6.37E+02 | NA
0.00E+04 | | J | | | | | | | 1.77E+02
1.82E+01 | | | | 1.22E+01 | | | ļ | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | 1.09E+01 | | | | 1.03E+01 | | | | 6.51E+00 | | | | 6.56E+00 | | | | | Cobalt | mg/kg | 1.75E+01 | 4.68E+02 | 3.03E+00 | | | | 6.09E+00 | | 7/50 | | | | | | 7.86E+01 | | YES | | | Copper | mg/kg | | | 5.90E+00 | | | 7/50 | 5.95E+01 | | YES | YES | 1.67E+01
1.73E+04 | | | YES | 1.10E+04 | | YES | YES | | Iron | mg/kg | | 2.34E+03 | | | | YES | 1.16E+04 | | VEC | | | | YES | YES | 4.68E+02 | 1 | YES | YES | | Lead | mg/kg | | 4.00E+02 | 6.23E+00 | | | | 1.28E+03 | J | YES | YES | 5.64E+01
7.60E+02 | J | YES | | 6.15E+02 | J | YES | YES | | Magnesium | mg/kg | 7.66E+02 | NA | 4.72E+02 | | | | 7.09E+02 | | | 7/50 | | | | VE0 | 1.23E+03 | | | YES | | Manganese | mg/kg | | 3.63E+02 | 9.63E+01 | | | | 8.41E+02 | | | YES | 5.27E+02 | | 7/50 | YES | 1.23E+03
5.30E-02 | | | YES | | Mercury | mg/kg | | 2.33E+00 | 4.56E-02 | J | | | 4.57E-02 | J | | | 9.29E-02 | J | YES | | | J | | | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | 3.25E+00 | | | | 6.35E+00 | | | ļ | 7.70E+00 | | | | 5.82E+00 | | | <u> </u> | | Potassium | mg/kg | 7.11E+02 | NA | 7.08E+02 | | | | 6.63E+02 | | | | 6.33E+02 | | | | 5.65E+02 | | VE0 | ļ | | Selenium | mg/kg | | 3.91E+01 | ND | | | | 1.35E+00 | | YES | | 1.30E+00 | | YES | | 1.20E+00 | | YES | | | Silver | mg/kg | | 3.91E+01 | ND | | | <u> </u> | | Sodium | mg/kg | 7.02E+02 | NA | 2.67E+01 | J | | | 4.91E+01 | В | | | 5.18E+01 | В | | | 5.05E+01 | R | | | | Thallium | mg/kg | 1.40E+00 | | ND | | | <u> </u> | | Vanadium | mg/kg | 6.49E+01 | | 1.72E+01 | | | | 1.61E+01 | | | | 3.04E+01 | | | | 1.71E+01 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 1.27E+01 | J | | | 2.72E+01 | | | | 2.32E+01 | | L | 1 | 3.36E+01 | | L | | | VOLATILE ORGANIC COMPOUN | | | | | | | | | | | | · | | | | Lim | | | · | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | ļ | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | _ | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | L | | NR | | | | NR | | <u> </u> | | NR | | L | 1 | | SEMIVOLATILE ORGANIC COM | | | | | | | | | | | | | | · | | | | | | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | ļ | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | NR | | | L | NR | | | | NR | | L | 1 | | PESTICIDES | | | | | | | | | | | | | | | · | 15 | | | | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | NR | | | | NR | | | | NR | | ļ | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | ļ | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | L | <u></u> | NR | | L | l | NR | | L | | | EXPLOSIVES | | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | T | | | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND
ND | | | | ND | | | ļ | ND | | | ļ | ND | | | | | 2-Amino-4,6-dinitrotoluene | | | | | | | | ND | | | L | ND | | | L | ND | | L | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 9 of 19) | Parı
Sample I
Sample | | | | | | -MW01
48Q
009
I-02
2 | | | HR-94Q
HR-9
RJ00
5-Aug
1 - | 94Q
002
g-02 | | | HR-94Q
HR-9
RJ00
30-Ju
1 - | 94Q
005
II-02 | | | HR-940
HR-
RJ0
30-J | 94Q
007
ul-02 | | |----------------------------|-------|------------------|-------------------|----------|----------|----------------------------------|-------------|----------|--|--------------------|-------|----------|--|---------------------|--------|----------|------------------------------|---------------------|-------| | | 1, | BKC _a | SSSL ^b | Result | Qual | >BKG | >SSSL | | METALS | Units | DKG | JUJE | Result | Quai | , DICO | ,000E | 1 (Court | Quui | - DICC | 10001 | recount | - Quui | 1 5110 | 1 0002 | 1,000 | <u> </u> | 1 = 112 | 1 | | Aluminum | mg/kg | 1.36F+04 | 7.80E+03 | 1.81E+04 | | YES | YES | 8.22E+03 | | | YES | 2.00E+04 | | YES | YES | 2.58E+04 | | YES | YES | | Antimony | mg/kg | | 3.11E+00 | ND | | | | | Arsenic | mg/kg | 1.83E+01 | | | | | YES | 4.71E+00 | | | YES | 4.86E+00 | | | YES | 6.84E+00 | | 1 | YES | | Barium | mg/kg | 2.34E+02 | 5.47E+02 | 8.84E+01 | | | | 1.43E+02 | J | | | 1.05E+02 | J | | , | 1.44E+02 | J | | | | Beryllium | mg/kg | 8.60E-01 | 9.60E+00 | 4.10E-01 | J | | | 7.74E-01 | J | | | 6.58E-01 | J | | | 1.72E+00 | | YES | | | Cadmium | mg/kg | 2.20E-01 | 6.25E+00 | ND | | | | ND | | | | ND | | | | 5.62E-01 | J | YES | | | Calcium | mg/kg | 6.37E+02 | NA | 3.08E+02 | | | | 3.48E+02 | | | | 1.39E+02 | | | | 2.52E+02 | | | | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | 2.23E+01 | | | | 8.81E+00 | | | | 1.45E+01 | | | | 1.78E+01 | , | | | | Cobalt | ma/ka | 1.75E+01 | | 6.57E+00 | | | | 9.81E+00 | | | | 7.20E+00 | | | | 1.46E+01 | | | | | Copper | mg/kg | | 3.13E+02 | 5.49E+01 | | YES | | 2.02E+01 | | YES | | 2.05E+01 | | YES | | 3.79E+01 | | YES | | | Iron | mg/kg | | 2.34E+03 | | | | YES | 1.79E+04 | | | YES | 1.76E+04 | | | YES | 1.80E+04 | | , | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | | .] | YES | | 1.17E+02 | | YES | | 6.97E+01 | J | YES | | 2.55E+02 | j | YES | 1 | | Magnesium | mg/kg | 7.66E+02 | NA NA | 6.28E+02 | <u> </u> | ,,,,, | | 2.34E+02 | | | | 9.55E+02 | | YES | | 1.21E+03 | | YES | | | Manganese | mg/kg | 1.36E+03 | | | | | YES | 7.48E+02 | J | | YES | 5.88E+02 | J | | YES | 1.45E+03 | J | YES | YES | | Mercury | mg/kg | 7.00E-02 | | 6.89E-02 | .1 | | | 5.41E-02 | | | 1 | 6.50E-02 | | | | 6.64E-02 | j | | 1 | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | | <u> </u> | | | 5.37E+00 | | | | 9.18E+00 | - | | | 1.46E+01 | | YES | 1 | | Potassium | mg/kg | 7.11E+02 | NA. | 5.62E+02 | J | | | 2.56E+02 | В | | | 1.10E+03 | | YES | | 1.05E+03 | | YES | | | Selenium | mg/kg | 4.70E-01 | | 9.96E-01 | | YES | | 8.12E-01 | В | YES | | 8.72E-01 | В | YES | | 1.59E+00 | | YES | | | Silver | mg/kg | 2.40E-01 | | ND | | | | ND | - | | | ND | | | | ND | | | | | Sodium | mg/kg | 7.02E+02 | NA | 4.32E+01 | В | | | 2.43E+01 | В | | | 4.01E+01 | В | | | 8.48E+01 | В | | | | Thallium | mg/kg | 1.40E+00 | | ND | | | | 7.19E-01 | В | | YES | ND | | | | ND | | | | | Vanadium | mg/kg | 6.49E+01 | 5.31E+01 | 2.46E+01 | | | | 1.46E+01 | | | | 2.42E+01 | | | | 3.17E+01 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 2.82E+01 | , , , , | | | 1.93E+01 | | | | 2.65E+01 | | | | 3.96E+01 | | YES | I | | VOLATILE ORGANIC COMPOUN | 2-Butanone | mg/kg | NA | 4.66E+03 | 8.10E-03 | J | | | NR | | | | NR | | | | 6.10E-02 | | | | | Acetone | mg/kg | NA | 7.76E+02 | 1.00E-01 | J | | | NR | | | | NR | | | | ND | | | | | Toluene | mg/kg | NA | 1.55E+03 | ND | | | | NR | | | | NR | | | | 1.90E-03 | | | | | p-Cymene | mg/kg | NA | 1.55E+03 | ND | | | | NR | | | | NR | | | | 3.90E-03 | j | | | | SEMIVOLATILE ORGANIC COMP | OUNDS | Fluoranthene | mg/kg | NA | 3.09E+02 | ND | | | | NR | | | | NR | | | | ND | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | ND | | | | NR | | | | NR | | | | ND | | | | | PESTICIDES | | | | • | | | | | | | | | | | | | | | | | 4.4'-DDT | mg/kg | NA | 1.79E+00 | ND | | | | NR | | | | NR | | | | ND | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | ND | | | | NR | | | | NR | | | | 1.90E-03 | J | | | | Heptachlor | mg/kg | NA | 1.40E-01 | ND | | | | NR | | | | NR | | | | ND | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | ND | | | | NR | | | | NR | | | | ND | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | ND | | | | NR | | | | NR | | | | ND | | | | | EXPLOSIVES | 2.4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 10 of 19) | Paro
Sample N | Sample Location Parcel Sample Number Sample Date Sample Depth (Feet) | | | | | -GP05
4Q
010
I-02 | | | HR-94Q
HR-9
RJ00
30-Ju | 94Q
013 | | | HR-940
HR-9
RJ00
30-Ju | 94Q
015 | | | HR-940
HR-
RJ0
5-Au | 94Q
017 | | |----------------------------|--|------------------|----------|------------|------|----------------------------|-------|---------------------------------------|---------------------------------|------------|-------|----------|---------------------------------------|------------|--------------|------------|------------------------------|--------------|----------| | Sample De | pth (Feet) | | | | 2 - | 3 | | | 1 - | 2 | | | 1 - | | | | 1 - | ~~~ | | | Parameter | Units | BKG ^a | SSSL⁵ | Result | Qual | >BKG | >SSSL | | METALS | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | , | · · · · · · · · · · · · · · · · · · · | | | | | | | | Aluminum | mg/kg | | 7.80E+03 | | | | | 2.28E+04 | | YES | YES | 1.30E+04 | | | YES | 6.36E+03 | | ļ | | | Antimony | mg/kg | 1.31E+00 | | ND | | ļ | | | Arsenic | mg/kg | 1.83E+01 | | 1.95E+00 | | | YES |
5.79E+00 | | | YES | 3.01E+00 | | | YES | 1.64E+00 | | | YES | | Barium | mg/kg | | | | | | | 8.31E+01 | J | | | 1.34E+02 | | | | 1.07E+02 | J | ļ | | | Beryllium | mg/kg | | 9.60E+00 | ND | | | | 1.65E+00 | | YES | | 6.16E-01 | J | | | 7.59E-01 | J | | | | Cadmium | mg/kg | | 6.25E+00 | ND | | | | 9.06E-01 | J | YES | | ND | | | | ND
1005 | | | 4 | | Calcium | mg/kg | 6.37E+02 | NA | 6.58E+01 | J | | | 1.40E+02 | | | | 2.06E+02 | | | | 1.83E+02 | | | 4 | | Chromium | mg/kg | 3.83E+01 | | 5.33E+00 | | | | 2.09E+01 | | | | 9.53E+00 | | | | 5.60E+00 | | | 4 | | Cobalt | mg/kg | 1.75E+01 | | | | | | 4.73E+00 | | | | 4.80E+00 | | 1 | ļ | 5.59E+00 | | | | | Copper | mg/kg | 1.94E+01 | | | | | | 7.61E+00 | | | | 3.23E+01 | | YES | | 7.96E+00 | | <u> </u> | | | Iron | mg/kg | | | | | | YES | 2.28E+04 | | | YES | 9.70E+03 | | | YES | 9.78E+03 | | | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 4.10E+01 | ., | YES | | 1.06E+01 | J | | | 1.59E+02 | J | YES | | 1.25E+01 | | | | | Magnesium | mg/kg | 7.66E+02 | NA. | 2.63E+02 | | | | 1.08E+03 | | YES | | 6.39E+02 | | | | 1.86E+02 | | ļ | | | Manganese | mg/kg | | | 2.88E+02 | | | | 8.28E+01 | | | | 3.98E+02 | <u>J</u> | | YES | 6.90E+02 | | ļ | YES | | Mercury | mg/kg | | 2.33E+00 | 4.22E-02 | | | | 4.43E-02 | J | | | 3.83E-02 | J | | ļ | 3.96E-02 | J | ļ | | | Nickel | mg/kg | | | 2.89E+00 I | | | | 9.84E+00 | | | | 5.24E+00 | | | ļ | 3.71E+00 | | | | | Potassium | mg/kg | 7.11E+02 | NA | 1.81E+02 I | В | | | 1.34E+03 | | YES | | 6.55E+02 | | | | 3.89E+02 | | | | | Selenium | mg/kg | | 3.91E+01 | ND | | | | 2.20E+00 | | YES | | ND | | | | 5.48E-01 | В | YES | | | Silver | mg/kg | | 3.91E+01 | ND | | | | | Sodium | mg/kg | 7.02E+02 | NA | ND | | | | 1.08E+02 | | | | 3.95E+01 | В | | | ND | | | | | Thallium | mg/kg | 1.40E+00 | | ND | | | | 1.11E+00 | J | | YES | ND | | | | ND | | | | | Vanadium | mg/kg | 6.49E+01 | | 8.09E+00 | | | | 2.94E+01 | | | | 1.39E+01 | | | | 5.95E+00 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 7.26E+00 | | | | 3.06E+01 | | <u>L</u> | | 2.50E+01 | | L | | 2.00E+01 | | | | | VOLATILE ORGANIC COMPOUN | | | | | | | | | | | | , | | | 1 | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | , | | | NR | | | | NR | | | | NR | | | ļ | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | NR | | | | NR | | | | NR | | ļ | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | NR | | | | NR | | ļ | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | NR | | | <u> </u> | NR | | L | | | SEMIVOLATILE ORGANIC COMP | | | | | | | | | | , | | | | | , | | | | | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | NR | | | | NR | | | | NR | | | 4 | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | NR | | | | NR | | L | L | NR | | L | | | PESTICIDES | ., | | | | | | | , | | | | | | · | | | | | ., | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | NR | | | | NR | | | | NR | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | NR | | ļ | | NR | | | ļ | NR | | | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | NR | | | | NR | | | ļ | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | | | NR | | | ļ | NR | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | <u> </u> | | NR | | L | <u> </u> | NR | | | | | EXPLOSIVES | . , | | | | | | | | | | r | | | | | | | | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | ND | | | | ND | | | | ND
ND | | | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | ND | | <u> </u> | | ND | | | <u> </u> | ן אט ן | | | <u> </u> | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 11 of 19) | Sample L
Parc
Sample N
Sample
Sample De | cel
Number
Date | ı | | | HR-94Q
HR-9
RJ00
5-Au | 94Q
019
g-02 | | | HR-94Q
HR-9
RJ00
30-Ju
1 - | 94Q
022
11-02 | | | HR-94Q
HR-9
RJ0
5-Au | 94Q
024
g-02 | | | HR-950
HR-950
QW0
12-Au | 95Q
1003
1g-02 | | |---|-----------------------|------------------|----------|----------|--------------------------------|--------------------|---|----------|--|---------------------|-------|----------|-------------------------------|--------------------|----------|----------|----------------------------------|----------------------|-------| | Parameter | Units | BKG ^a | SSSLb | Result | Qual | >BKG | >SSSL | | METALS | | | <u> </u> | | | | | | | | | | | • | | | | | | | Aluminum | mg/kg | 1.36E+04 | 7.80E+03 | 1.10E+04 | | | YES | 1.97E+04 | | YES | YES | 7.77E+03 | | | | 3.10E+04 | | YES | YES | | Antimony | mg/kg | 1.31E+00 | 3.11E+00 | ND | | | | | Arsenic | mg/kg | 1.83E+01 | 4.26E-01 | 3.46E+00 | | | YES | 4.56E+00 | | | YES | 2.61E+00 | | | YES | 8.77E+00 | J | | YES | | Barium | mg/kg | 2.34E+02 | 5.47E+02 | 3.03E+01 | J | | | 6.55E+01 | | | | 2.51E+02 | | YES | | 5.03E+01 | | | | | Beryllium | mg/kg | 8.60E-01 | 9.60E+00 | ND | | | | 6.85E-01 | J | | | 6.88E-01 | J | | | 4.42E-01 | J | | | | Cadmium | mg/kg | 2.20E-01 | 6.25E+00 | | | | | ND | | | | ND | | | | ND | | | | | Calcium | mg/kg | 6.37E+02 | NA | 6.63E+01 | J | | | 1.21E+02 | | | | 1.14E+03 | | YES | <u> </u> | 7.46E+01 | J | | | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | | | | | 1.28E+01 | | | | 6.02E+00 | | | | 3.39E+01 | · | | YES | | Cobalt | mg/kg | 1.75E+01 | 4.68E+02 | | J | | | 1.01E+01 | | | | 4.84E+00 | | | | 3.02E+00 | | | | | Copper | mg/kg | 1.94E+01 | 3.13E+02 | 6.04E+00 | | | | 7.11E+00 | | | | 3.55E+01 | | YES | | 1.55E+01 | | | | | Iron | mg/kg | 4.48E+04 | 2.34E+03 | 2.06E+04 | | | YES | 1.35E+04 | | | YES | 8.52E+03 | | | YES | 3.96E+04 | | | YES: | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 7.40E+00 | | | | 1.41E+01 | J | | | 3.65E+01 | | | | 1.59E+01 | | | | | Magnesium | mg/kg | 7.66E+02 | NA | 1.95E+02 | | | *************************************** | 9.83E+02 | | YES | / | 2.41E+02 | | | | 5.17E+02 | | | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 3.68E+01 | J | | | 5.85E+02 | J | | YES | 9.04E+02 | J | | YES | 2.48E+02 | J | | | | Mercury | mg/kg | 7.00E-02 | 2.33E+00 | 6.74E-02 | J | | | 1.03E-01 | J | YES | | ND | | | | 2.11E-01 | | YES | | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | 2.16E+00 | В | | | 1.09E+01 | | | | 4.22E+00 | | | | 9.33E+00 | | | | | Potassium | mg/kg | 7.11E+02 | NA | 6.78E+02 | | | | 7.61E+02 | | YES | | 5.80E+02 | | | | 5.38E+02 | | | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 6.63E-01 | В | YES | | 9.16E-01 | В | YES | | ND | | | | 1.72E+00 | J | YES | | | Silver | mg/kg | | 3.91E+01 | ND | | | | | Sodium | mg/kg | 7.02E+02 | NA | ND | | | | 3.92E+01 | В | | | 2.37E+01 | В | | | 2.19E+01 | J | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 | ND | | | | | Vanadium | mg/kg | 6.49E+01 | 5.31E+01 | 1.74E+01 | | | | 2.50E+01 | | | | 9.05E+00 | | | | 5.48E+01 | | | YES | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 5.23E+00 | | | | 2.56E+01 | | | | 3.14E+01 | | | | 2.19E+01 | J | | | | VOLATILE ORGANIC COMPOUN | DS | | | | | A.z.z. | | | | | | | | | | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | 2.90E-02 | | | | NR | | | | ND | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | ND | | | | NR | | | | 4.00E-02 | | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | 5.20E-03 | | | | NR | | | | 2.00E-03 | J | | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | 2.30E-03 | J | | | NR | | | | ND | | l | | | SEMIVOLATILE ORGANIC COMP | | | | | | | • | | | | | | | | | | | | | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | ND | | | | NR | | | | ND | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | ND | | | | NR | | | | ND | | | | | PESTICIDES | 4.4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | 3.30E-03 | J | | | NR | | | | 4.10E-03 | J | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | ND | | | | NR | | | | ND | | | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | ND | | | | NR | | | | ND | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | ND | | | | NR | | | | ND | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | ND | | | | NR | | | | ND | | 1 | | | EXPLOSIVES | | | | | | | | | | | | | | | | | | | _ | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | ND | | | | ND | | | | ND | | <u> </u> | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | ND | | | | ND | | J | <u> </u> | ND | | <u> </u> | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 12 of 19) | Sample L
Parc
Sample N
Sample
Sample De | el
lumber
Date | | | | HR-95Q
HR-9
QW0
12-Au
1 - | 5Q
005
g-02 | | | HR-95Q
HR-9
QW0
12-Au
1 - | 95Q
007
g-02 | | | HR-95Q
HR-9
QW0
12-Au | 5Q
009
g-02 | | | HR-950
HR-9
QW0
13-Au | 95Q
1011
1g-02 | | |---|----------------------|------------------|-------------------|----------|---------------------------------------|-------------------|-------|----------|---------------------------------------|--------------------|--------|----------|---------------------------------------|-------------------|----------|----------|--------------------------------|----------------------|-------| | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | | METALS | | | | | | | | | | | ······ | | · · · · · · · · · · · · · · · · · · · | | <u> </u> | | 1.11. | | | | Aluminum | mg/kg | 1.36E+04 | 7.80E+03 | 2.53E+04 | | YES | YES | 2.71E+04 | | YES | YES | 1.57E+04 | | YES | YES |
2.70E+04 | | YES | YES | | Antimony | mg/kg | 1.31E+00 | 3.11E+00 | ND | | | | ND | | | | ND | | | | 5.96E+00 | J | YES | YES | | Arsenic | mg/kg | 1.83E+01 | 4.26E-01 | 8.77E+00 | J | | YES | 7.15E+00 | J | | YES | 4.30E+00 | | | YES | 5.98E+00 | | | YES | | Barium | mg/kg | 2.34E+02 | 5.47E+02 | 4.84E+01 | | | | 9.93E+01 | | | | 6.32E+01 | | | | 6.74E+01 | | | | | Beryllium | mg/kg | 8.60E-01 | 9.60E+00 | 4.53E-01 | J | | | 5.27E-01 | J | | | 5.28E-01 | J | | | 6.81E-01 | J | | | | Cadmium | mg/kg | 2.20E-01 | 6.25E+00 | ND | | | | | Calcium | mg/kg | 6.37E+02 | NA | 6.85E+01 | J | | | 1.06E+02 | J | | | 6.77E+01 | J | | | 1.98E+02 | | | | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | 2.60E+01 | , | | YES | 2.49E+01 | | | YES | 1.78E+01 | | | | 1.94E+01 | | | | | Cobalt | mg/kg | 1.75E+01 | 4.68E+02 | 2.72E+00 | | | | 7.66E+00 | | | | 7.47E+00 | | | | 1.17E+01 | | | | | Copper | mg/kg | 1.94E+01 | 3.13E+02 | 1.34E+01 | , | | | 1.17E+01 | | | | 1.59E+02 | | YES | | 4.42E+01 | | YES | | | Iron | mg/kg | 4.48E+04 | 2.34E+03 | 4.01E+04 | | | YES | 3.09E+04 | | , | YES | 2.87E+04 | | | YES | 2.76E+04 | | | YES | | Lead | mg/kg | | 4.00E+02 | 1.49E+01 | | | | 1.82E+01 | | | | 3.68E+02 | | YES | | 1.41E+02 | | YES | | | Magnesium | mg/kg | 7.66E+02 | NA | 4.10E+02 | | | | 5.40E+02 | | | | 3.59E+02 | | | | 6.63E+02 | | | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 1.95E+02 | J | | | 9.02E+02 | J | | YES | 3.75E+02 | | | YES | 1.73E+03 | | YES | YES | | Mercury | mg/kg | 7.00E-02 | 2.33E+00 | 1.54E-01 | | YES | | 1.43E-01 | | YES | | 7.68E-02 | J | YES | | 9.95E-02 | J | YES | | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | 7.14E+00 | | | | 9.82E+00 | | | | 7.20E+00 | | | | 1.08E+01 | | | | | Potassium | mg/kg | 7.11E+02 | NA | 6.32E+02 | | | | 6.14E+02 | | | | 7.54E+02 | | YES | | 7.37E+02 | | YES | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 1.29E+00 | J | YES | | 1.02E+00 | J | YES | | 1.27E+00 | В | YES | | 1.29E+00 | В | YES | | | Silver | mg/kg | 2.40E-01 | 3.91E+01 | ND | | | | | Sodium | mg/kg | 7.02E+02 | NA | 2.69E+01 | J | | | 2.52E+01 | J | | | 2.38E+01 | J | | | 3.17E+01 | J | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 | ND | | | | | Vanadium | mg/kg | 6.49E+01 | 5.31E+01 | 4.89E+01 | | | | 4.16E+01 | | | | 2.77E+01 | | | | 3.70E+01 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 1.78E+01 | J | | | 2.21E+01 | J | | | 3.66E+01 | | YES | | 2.99E+01 | | | | | VOLATILE ORGANIC COMPOUN | DS | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | | SEMIVOLATILE ORGANIC COMP | OUNDS | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | | PESTICIDES | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | ŃR | | | | NR | | | | NR | | | | NŘ | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | | EXPLOSIVES | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 13 of 19) | Sample I
Par
Sample
Sample | cel
Number
e Date | | | | HR-950
HR-
QW0
12-A1 | 95Q
0013
ug-02 | | | HR-
QW(
12-A) | Q-GP07
-95Q
0023
ug-02
- 2 | | | HR-95Q
HR-9
QW0
12-Au | 95Q
1025
1g-02 | | | HR-950
HR-950
QW0
13-Au | 95Q
1027
1g-02 | | |-------------------------------------|-------------------------|----------|-------------------|----------|-------------------------------|----------------------|-------|----------|---------------------|--|-------------|----------------------|--------------------------------|----------------------|----------|----------|----------------------------------|---------------------------------------|--| | Sample De | | BKGª | SSSL ^b | D 14 | | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | | Parameter | Units | BKG | 555L | Result | Qual | >BKG | >555L | Result | Quai | >BNG | 2000L | Result | Quai | >bnG | /333L | Result | Quai | >bnu | /333L | | METALS | ma/ka | 1 26E±04 | 7.80E+03 | 2 105+04 | | YES | YES | 1.59E+04 | | YES | YES | 3.28E+04 | | YES | YES | 1.63E+04 | | YES | T YES | | Aluminum | | 1.36E+04 | | ND | | TES | TES | ND | | IES | 1L3 | ND | | 11.5 | 123 | ND ND | | ILU | + | | Antimony | | | | 6.83E+00 | | | YES | 3.25E+00 | | | YES | 7.05E+00 | | | YES | 3.92E+00 | | | YES | | Arsenic | | | | 5.30E+01 | J | | 152 | 9.33E+01 | | | TES | 8.49E+01 | J | | IES | 1.01E+02 | | | 153 | | Barium | | | | | | | | | | | | 9.45E-01 | | YES | | 1.08E+00 | 1 | YES | + | | Beryllium | mg/kg | 8.60E-01 | 9.60E+00 | 4.07E-01 | J | | | 6.29E-01 | J | | | | J | YES | | ND | J | 150 | | | Cadmium | mg/kg | 2.20E-01 | 6.25E+00 | ND | | | | ND | | | | ND ND | | ļ | | | | | | | Calcium | | 6.37E+02 | NA | 6.12E+01 | | | | 7.35E+01 | J | | | 1.00E+02 | J | ļ | | 1.68E+02 | | | + | | Chromium | | 3.83E+01 | | 2.13E+01 | | | | 1.72E+01 | | | | 1.81E+01 | | | | 1.35E+01 | | ļ | | | Cobalt | | | 4.68E+02 | 4.67E+00 | | | | 7.98E+00 | | | | 1.70E+01 | | | | 7.54E+00 | | 1.55 | | | Copper | | 1.94E+01 | | 1.23E+01 | | | | 1.35E+01 | | | | 1.18E+01 | | | | 2.14E+01 | | YES | | | Iron | | 4.48E+04 | | 2.81E+04 | | · | YES | 2.66E+04 | | | YES | 2.93E+04 | | | YES | 1.79E+04 | | | YES | | Lead | | 3.85E+01 | 4.00E+02 | 1.24E+01 | | | | 1.78E+01 | | | | 2.40E+01 | | ļ | | 9.27E+01 | | YES | | | Magnesium | | 7.66E+02 | NA | 6.72E+02 | | | | 4.60E+02 | - | | | 7.71E+02 | | YES | | 4.98E+02 | | | | | Manganese | | 1.36E+03 | | 1.52E+02 | J | | | 5.59E+02 | | | YES | 3.46E+03 | J | YES | YES | 1.54E+03 | | YES | YES | | Mercury | mg/kg | 7.00E-02 | 2.33E+00 | 1.48E-01 | | YES | | 9.42E-02 | J | YES | | 1.23E-01 | | YES | | 6.23E-02 | J | | | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | 7.89E+00 | | | | 8.46E+00 | | | | 1.49E+01 | | YES | | 8.20E+00 | | | | | Potassium | mg/kg | 7.11E+02 | NA | 1.12E+03 | | YES | | 9.71E+02 | | YES | | 6.25E+02 | | | | 8.66E+02 | | YES | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 1.35E+00 | J | YES | | 1.02E+00 | В | YES | | 1.52E+00 | J | YES | | ND | | | | | Silver | mg/kg | 2.40E-01 | 3.91E+01 | ND | | | | 1.22E+00 | J | YES | | ND | | | | ND | | | | | Sodium | ma/ka | 7.02E+02 | NA | 2.71E+01 | J | | | 3.15E+01 | J | | | 2.71E+01 | J | | | 3.14E+01 | J | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 | ND | | | | | Vanadium | | | 5.31E+01 | 3.31E+01 | | | | 2.81E+01 | | | | 3.88E+01 | | | | 2.23E+01 | | | | | Zinc | | | 2.34E+03 | | 1 | | | 2.34E+01 | | | | 3.14E+01 | J | | | 2.06E+01 | | | | | VOLATILE ORGANIC COMPOUN | | 0.102 01 | 1 2.0 00 | | | | L | 1 | | | | 1 | | | | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR I | | | | NR I | | | | NR I | | T | | NR | | | \Box | | Acetone | mg/kg | NA NA | 7.76E+02 | NR | | | | NR | | I | | NR | | 1 | | NR | | | | | Toluene | mg/kg | NA NA | 1.55E+03 | NR | | | | NR NR | | | | NR I | | t | | NR NR | | | | | p-Cymene | mg/kg | NA NA | 1.55E+03 | NR | | | | NR NR | | | | NR NR | | | | NR NR | | | 1 | | SEMIVOLATILE ORGANIC COM | | 110 | 1.00E.00 | 1417 | | | | 1 111 | | 1 | | 1 | | 1 | I | 1 | | 1 | | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | NR T | | | | NR T | | · | | NR I | | T | T | | N-Nitrosodiphenylamine | mg/kg | NA NA | 1.29E+02 | NR | | | | NR | | | | NR I | | | | NR I | | | | | PESTICIDES | i mg/kg | INA | 1.285+02 | INIX | | | l | I INIX | | | L | 1317 | | | | 1315 | | I | | | 4.4'-DDT | mg/kg | NA | 1.79E+00 | NR I | | | | NR I | | T | I | NR T | | 1 | I | NR I | | Τ | T | | | | NA
NA | 3.88E-02 | NR
NR | | | | NR NR | | | l | NR NR | | | | NR NR | | | + | | Dieldrin | mg/kg | | | NR NR | | | | NR NR | | | | NR NR | | | <u> </u> | NR I | | | + | | Heptachlor | mg/kg | NA
NA | 1.40E-01 | | | | | NR NR | | | | NR NR | | | | NR I | | | + | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | | | | | NR NR | | + | | NR NR | | | + | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | L | NR | | L | L | I INK | | L | L | INIX | | L | | | EXPLOSIVES | | | T = === - : 1 | | | | | 1 15 | | 1 | T | ,,,,, , | | Υ | | ND I | | · · · · · · · · · · · · · · · · · · · | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | ND | | | | ND ND | | ļ | | ND
ND | | | + | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | ND | | L | <u> </u> | ND | | <u></u> | <u>L</u> | ן שט | | | L | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 14 of 19) | Pa
Sample
Samp | Location
rcel
Number
le Date | | | | HR-95Q
HR-9
QW0
12-Au
1 - | 95Q
015
g-02 | | | HR-95Q-
HR-9
QW0-
13-Au
1 - | 95Q
017
g-02 | | | HR-95Q
HR-9
QW0
12-Au
2 - | 95Q
1019
1g-02 | | | HR-96Q
HR-9
QP0
22-Ju
1 - | 96Q
002
II-02 | | |----------------------------|---------------------------------------|------------------|----------|----------|---------------------------------------|--------------------|---|----------
---|--------------------|-------|----------|---------------------------------------|----------------------|-------|----------|---------------------------------------|---------------------|-------| | Parameter | Units | BKG ^a | SSSLb | Result | Qual | >BKG | >SSSL | | METALS | • | | | | | | | · | | | | | | <u> </u> | | | 4 | | | | Aluminum | mg/kg | 1.36E+04 | 7.80E+03 | 2.15E+04 | | YES | YES | 1.06E+04 | | | YES | 1.77E+04 | | YES | YES | 9.31E+03 | | | YES | | Antimony | mg/kg | 1.31E+00 | 3.11E+00 | ND | | | | 5.14E+00 | J | YES | YES | ND | | | | ND | | | | | Arsenic | mg/kg | 1.83E+01 | 4.26E-01 | 6.70E+00 | | | YES | 3.85E+00 | | | YES | 5.12E+00 | J | | YES | 2.81E+00 | J | | YES | | Barium | mg/kg | 2.34E+02 | 5.47E+02 | 3.71E+01 | | | | 5.16E+01 | | | | 7.06E+01 | | | | 1.21E+02 | | | | | Beryllium | mg/kg | | 9.60E+00 | ND | | | | 4.59E-01 | J | | | 5.16E-01 | J | | | 5.15E-01 | J | | | | Cadmium | mg/kg | 2.20E-01 | 6.25E+00 | ND | | | | | Calcium | mg/kg | 6.37E+02 | NA | 6.39E+01 | J | | | 1.49E+02 | | | | 2.77E+02 | | | | 2.95E+02 | | | | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | 2.60E+01 | | | YES | 1.95E+01 | | | | 1.52E+01 | | | | 7.81E+00 | | | | | Cobalt | mg/kg | 1.75E+01 | 4.68E+02 | 3.40E+00 | | | | 9.48E+00 | | | | 3.25E+01 | | YES | | 5.89E+00 | | | | | Copper | | | 3.13E+02 | 1.02E+02 | | YES | | 1.30E+02 | | YES | | 1.05E+01 | | | | 3.87E+01 | | YES | | | Iron | | | 2.34E+03 | 3.76E+04 | | | YES | 2.21E+04 | | | YES | 2.05E+04 | | | YES | 8.94E+03 | | | YES | | Lead | | 3.85E+01 | 4.00E+02 | 2.85E+02 | | YES | | 2.38E+02 | | YES | | 2.12E+01 | | | | 2.77E+02 | | YES | | | Magnesium | | 7.66E+02 | NA | 4.12E+02 | | | | 3.70E+02 | | | | 6.29E+02 | | | | 4.44E+02 | | | | | Manganese | | | 3.63E+02 | 1.49E+02 | | | | 5.84E+02 | | | YES | 7.05E+02 | J | | YES | 6.34E+02 | | | YES | | Mercury | mg/kg | | 2.33E+00 | 1.18E-01 | | YES | | 5.38E-02 | J | | | 1.54E-01 | | YES | | 3.94E-02 | J | | | | Nickel | | 1.29E+01 | 1.54E+02 | 8.46E+00 | | | | 6.64E+00 | | | | 7.46E+00 | | | | 5.73E+00 | | | | | Potassium | ma/ka | 7.11E+02 | NA | 6.05E+02 | | | | 9.89E+02 | | YES | | 9.44E+02 | | YES | | 4.05E+02 | В | | | | Selenium | | 4.70E-01 | 3.91E+01 | 9.01E-01 | B | YES | | 9.57E-01 | В | YES | | 1.10E+00 | J | YES | | 1.05E+00 | В | YES | | | Silver | | 2.40E-01 | 3.91E+01 | ND | | | | | Sodium | | 7.02E+02 | NA | 3.33E+01 | J | | | 2.67E+01 | J | | | 2.73E+01 | J | | | 2.36E+01 | J | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 | ND | | | | | Vanadium | ma/ka | 6.49E+01 | 5.31E+01 | 4.51E+01 | | | | 1.87E+01 | | | | 2.30E+01 | | | | 1.09E+01 | | | | | Zinc | | 3.49E+01 | 2.34E+03 | 2.51E+01 | | | | 2.76E+01 | | | | 2.01E+01 | J | | | 1.96E+01 | J | | | | VOLATILE ORGANIC COMPOU | | L | | | | | A | | | | | | | | • | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | | SEMIVOLATILE ORGANIC COM | POUNDS | | | | | | • | | | | | | | | | | | | | | Fluoranthene | mg/kg | NA NA | 3.09E+02 | NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | | PESTICIDES | | | I | L | | | · | | | | | | | | 1 | | | | | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | T | NR | | | -3 | NR | | | | NR | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | 1 | NR | | | | NR | | | | NR | | | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | | EXPLOSIVES | 1 | | | 4 | | | • | | | | | | | | | | | | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | T | ND | | | | ND | | | | ND | | | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | ND | | | | ND | | | | ND | | L | | Table 2-4 # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 15 of 19) | | le Location
Parcel | | | | HR-96Q
HR-9 | 6Q | | | HR-96Q
HR-9 | 6Q | | | HR-96Q
HR-9 | 6Q | | | HR-96Q
HR-9 | 96Q | | |----------------------------|-----------------------|------------------|-------------------|----------|----------------|------|---|----------|----------------|----------|---------------------------------------|-----------|----------------|----------|---------|----------|----------------|----------|--------------| | Samp | le Number | | | | QP0 | 004 | | | QP0 | | | | QP0 | | | | QP0 | | | | Sam | iple Date | | | | 22-Ju | | l | | Sample | Depth (Feet) |) | | | 1.5 - | 2.5 | | | 1 - | 2 | | ļ | 1 - | | , | | 1 - | | | | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | | METALS | | | | | | , | | | | | | , | | | , | , | | · | | | Aluminum | mg/kg | | 7.80E+03 | 1.32E+04 | | | YES | 2.92E+04 | | YES | YES | 1.90E+04 | | YES | YES | 3.32E+04 | | YES | YES | | Antimony | mg/kg | 1.31E+00 | | ND | | | | | Arsenic | mg/kg | 1.83E+01 | | 3.40E+00 | J | | YES | 5.95E+00 | J | | YES | 5.33E+00 | J | | YES | 4.80E+00 | J | | YES | | Barium | mg/kg | | 5.47E+02 | 8.61E+01 | | | | 8.63E+01 | | | | 3.89E+01 | | | | 4.35E+01 | | | | | Beryllium | mg/kg | | 9.60E+00 | 5.30E-01 | J | | | ND | | | | ND | | | | ND | | | | | Cadmium | mg/kg | | 6.25E+00 | ND | | | ļ | | Calcium | mg/kg | 6.37E+02 | NA | 1.74E+02 | | | | 3.70E+02 | | | | 7.82E+02 | | YES | | 1.30E+02 | | | | | Chromium | mg/kg | 3.83E+01 | | 9.57E+00 | | | | 2.50E+01 | | | YES | 2.13E+01 | | | | 3.34E+01 | | | YES | | Cobalt | mg/kg | 1.75E+01 | | 5.43E+00 | | | | 2.49E+00 | | | | 2.02E+00 | J | | | 1.83E+00 | J | | ļ' | | Copper | mg/kg | 1.94E+01 | | 7.89E+00 | | | | 9.29E+00 | | | | 1.90E+01 | | | | 8.47E+00 | | | | | Iron | mg/kg | 4.48E+04 | | 1.25E+04 | | | YES | 2.35E+04 | | | YES | 2.88E+04 | | | YES | 2.60E+04 | | | YES | | Lead | mg/kg | | 4.00E+02 | 2.15E+01 | | | | 1.18E+01 | | | | 1.04E+01 | | | | 1.08E+01 | ····· | | | | Magnesium | mg/kg | 7.66E+02 | NA | 5.54E+02 | | | | 7.59E+02 | | | | 8.19E+02 | | YES | | 5.42E+02 | | | | | Manganese | mg/kg | | 3.63E+02 | 5.97E+02 | | | YES | 7.56E+01 | | | | 6.76E+01 | | | | 4.54E+01 | | | | | Mercury | mg/kg | | | 3.92E-02 | J | | | 1.11E-01 | J | YES | | 1.18E-01 | | YES | | 2.26E-01 | | YES | | | Nickel | mg/kg | 1.29E+01 | | 5.36E+00 | | | | 7.05E+00 | | | | 3.97E+00 | | | | 6.44E+00 | | | | | Potassium | mg/kg | 7.11E+02 | NA | 6.87E+02 | | | | 5.97E+02 | | | | 6.13E+02 | | | | 5.73E+02 | | | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 9.63E-01 | В | YES | | 1.42E+00 | В | YES | | 1.97E+00 | J | YES | | 1.72E+00 | В | YES | <u> </u> | | Silver | mg/kg | 2.40E-01 | | ND | | | <u> </u> | | Sodium | mg/kg | 7.02E+02 | NA | 3.07E+01 | J | | | 3.16E+01 | J | | | 2.50E+01 | J · | | | 2.53E+01 | J | | | | Thallium | mg/kg | 1.40E+00 | | ND | | | | | Vanadium | mg/kg | | 5.31E+01 | 1.74E+01 | | | | 4.11E+01 | | | | 3.48E+01 | | | | 4.96E+01 | | | | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 1.64E+01 | J | | | 2.13E+01 | J | | | 1.47E+01 | J | | | 1.94E+01 | J | | <u> </u> | | VOLATILE ORGANIC COMPO | | | | | | , | | | | | | , | | | | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | NR | | | | ND | | | | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | NR | | | | 4.00E-02 | J | | | NR | | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | ND | | | | NR | | | ļ | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | <u> </u> | L | ND | | l | L | NR | | L | <u> </u> | | SEMIVOLATILE ORGANIC CO | | | | | | , | | | | | | T 005 551 | | | | | | 1 | | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | NR | | | | 7.20E-02 | J | | | NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | L | | NR | | l | L | 1.60E-01 | J | l | L | NR | | L | L | | PESTICIDES | | | | | | | | | | | 1 | l NB 1 | | | | 1 15 | | | T | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | NR | | | | ND | | | | NR | | | ļ | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | NR | | | | ND | | | | NR | | | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | NR | | | | ND | | | | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | | | ND | | | ļ | NR | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | <u> </u> | | | NR | | l | | ND | | L | L | NR | | <u> </u> | L | | EXPLOSIVES | | | | | | | , | | | | · · · · · · · · · · · · · · · · · · · | | | т | | | | | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | ND | | | | ND | | | ļ | ND | | ļ | <u> </u> | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | L | ND | | | | ND | | <u> </u> | <u></u> | ND | | L | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 16 of 19) | Sample L
Parc
Sample N
Sample
Sample | el
lumber
Date | | | | HR-97Q
HR-9
QL00
23-Ju
1.5 - | 7Q
002
I-02 | | | HR-97Q
HR-9
QL00
23-Ju
1 - | 7Q
004
I-02 | | | HR-970
HR-9
QL0
23-Ju
2.5 - | 97Q
006
II-02 | | | HR-970
HR-1
QL0
25-Ju
2 - | 97Q
008
ıl-02 | | |--|----------------------|----------|----------|----------|--|-------------------|---------------------------------------|----------|--|-------------------|-------|----------|---|---------------------|-------|----------|---------------------------------------|---------------------|-------| | Parameter | Units | BKGª | SSSLb | Result | Qual | >BKG | >SSSL | | METALS | Onico | Ditto | 0001 | Robalt | - Guui | . 5.10 | | 7,000 | 4 | | | | | | | | | | | | Aluminum
| ma/ka | 1.36E+04 | 7.80E+03 | 1.46E+04 | | YES | YES | 1.90E+04 | | YES | YES | 2.42E+04 | | YES | YES | 3.47E+04 | | YES | YES | | Antimony | | 1.31E+00 | | ND | | | | | Arsenic | | 1.83E+01 | | 3.36E+00 | | | YES | 5.54E+00 | | | YES | 7.41E+00 | | | YES | 9.89E+00 | | | YES | | Barium | mg/kg | | 5.47E+02 | 7.67E+01 | | | | 1.11E+02 | | | | 9.42E+01 | | | | 1.19E+02 | | | | | Beryllium | mg/kg | | 9.60E+00 | 6.92E-01 | J | | | 8.41E-01 | J | | | 8.86E-01 | J | YES | | 9.20E-01 | J | YES | | | Cadmium | | | 6.25E+00 | ND | | | | | Calcium | | 6.37E+02 | NA | 9.01E+01 | J | | | 6.03E+03 | | YES | | 1.58E+02 | | | | 2.37E+02 | | | | | Chromium | | 3.83E+01 | 2.32E+01 | 9.11E+00 | | | | 1.65E+01 | | | | 7.13E+01 | | YES | YES | 3.80E+01 | | | YES | | Cobalt | | 1.75E+01 | | 1.45E+01 | | | | 1.12E+01 | | | | 9.88E+00 | | | | 1.08E+01 | | | | | Copper | ma/ka | 1.94E+01 | 3.13E+02 | 6.24E+00 | | | | 1.94E+01 | | | | 1.05E+01 | | | | 1.94E+01 | | | | | Iron | ma/ka | 4.48E+04 | 2.34E+03 | 1.36E+04 | | | YES | 3.81E+04 | | | YES | 4.39E+04 | | | YES | 4.81E+04 | | YES | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 2.82E+01 | J | | | 1.05E+02 | J | YES | | 4.43E+01 | J | YES | | 2.80E+01 | J | | | | Magnesium | ma/ka | | NA | 4.34E+02 | | | | 4.00E+03 | | YES | | 4.61E+02 | | | | 8.68E+02 | | YES | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 1.83E+03 | | YES | YES | 2.26E+03 | | YES | YES | 9.71E+02 | | | YES | 5.98E+02 | | | YES | | Mercury | ma/ka | | | 7.74E-02 | J | YES | | 1.08E-01 | J | YES | | 7.96E-02 | J | YES | | 1.02E-01 | J | YES | | | Nickel | ma/ka | 1.29E+01 | 1.54E+02 | 6.96E+00 | | | | 1.32E+01 | | YES | | 8.59E+00 | | | | 1.47E+01 | | YES | | | Potassium | mg/kg | 7.11E+02 | NA | 2.74E+02 | J | | | 6.35E+02 | | | | 3.06E+02 | J | | | 7.83E+02 | | YES | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 8.49E-01 | J | YES | | 1.83E+00 | | YES | | 2.08E+00 | | YES | | 1.45E+00 | | YES | | | Silver | mg/kg | | 3.91E+01 | ND | | | | | Sodium | mg/kg | | NA | 2.20E+01 | J | | | 3.93E+01 | J | | | ND | | | | 3.15E+01 | J | | | | Thallium | mg/kg | | 5.08E-01 | ND | | | | 1.11E+00 | J | | YES | 1.25E+00 | J | | YES | 1.68E+00 | j | YES | YES | | Vanadium | | 6.49E+01 | 5.31E+01 | 1.89E+01 | | | | 2.39E+01 | | | | 3.95E+01 | | | | 6.52E+01 | | YES | YES | | Zinc | mg/kg | | | | J | | | 1.52E+03 | J | YES | | 1.97E+01 | J | | | 3.63E+01 | J | YES | | | VOLATILE ORGANIC COMPOUN | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | NR | | | | NR | | | | 1.30E-02 | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | NR | | | | NR | | | | 2.70E-01 | J | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | NR | | | | 1.50E-03 | J | | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | NR | | | | 4.10E-03 | J | | | | SEMIVOLATILE ORGANIC COMP | OUNDS | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | NR | | | | NR | | | | ND | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | NR | | | | NR | | | | ND | | | | | PESTICIDES | 4.4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | NR | | | | NR | | | | ND | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | NR | | | | NR | | | | ND | | | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | NR | | | | NR | | | | 2.20E-03 | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | | | NR | | | | 1.50E-03 | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | NR | | | | NR | | | | 1.50E-03 | J | | | | EXPLOSIVES | | | • | | | | | | | | | | | | | | | | | | 2.4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | *************************************** | | | ND | | | | ND | | | | ND | | | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | ND | | | | ND | | Ĭ | | ND | | | | # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 17 of 19) | Sample L
Parc
Sample N
Sample
Sample | el
lumber
Date | | | | HR-970
HR-9
QL0
24-Ju
2.5 - | 97Q
011
il-02 | | | HR-97Q
HR-9
QL00
29-Ju
1 - | 97Q
913
11-02 | | | HR-97Q
HR-9
QL00
25-Ju
2 - | 97Q
015
il-02 | | | HR-970
HR-9
QL0
25-Ju
1 - | 97Q
017
ul-02 | | |--|----------------------|----------|-------------------|----------|---|---------------------|-------|----------|--|---------------------|-------|----------|--|---------------------|-------|----------|---------------------------------------|---------------------|-------| | Parameter | Units | BKGª | SSSL ^b | Result | Qual | >BKG | >SSSL | | METALS | Units | BNG | 333L | Result | Quai | /b//G | /333L | Result | Quai | /bkg | /333L | Result | Quai | > DICC | 7333L | Result | Quai | LADIKO | 70001 | | Aluminum | mg/kg | 1 36E+04 | 7.80E+03 | 3.57E+04 | | YES | YES | 1.85E+04 | | YES | YES | 1.58E+04 | | YES | YES | 2.42E+04 | | YES | YES | | Antimony | mg/kg | 1.31E+00 | | ND ND | | 12.0 | 120 | ND ND | | , | 120 | ND | | 120 | | ND ND | | T | | | Arsenic | ma/ka | | 4.26E-01 | 1.06E+01 | | | YES | 3.90E+00 | | | YES | 4.30E+00 | | | YES | 4.29E+00 | | | YES | | Barium | mg/kg | | 5.47E+02 | 1.07E+02 | | | | 4.47E+01 | | | | 7.57E+01 | | | | 2.10E+01 | | | | | Bervilium | mg/kg | | 9.60E+00 | 8.38E-01 | 1 | | | ND | | | | 4.30E-01 | J | | | ND | | | | | Cadmium | mg/kg | | 6.25E+00 | ND ND | | | | | Calcium | mg/kg | 6.37E+02 | NA NA | 2.08E+02 | | | | 1.55E+02 | | | | 1.03E+02 | J | | | 6.70E+01 | J | | | | Chromium | ma/ka | | 2.32E+01 | 2.48E+01 | | | YES | 2.20E+01 | | | | 1.46E+01 | | | | 3.54E+01 | - | † | YES | | Cobalt | mg/kg | | 4.68E+02 | 1.09E+01 | | | | 1.76E+00 | J | | | 1.22E+01 | | | | ND | | | | | Copper | mg/kg | | 3.13E+02 | 1.42E+01 | | | | 1.19E+01 | | | | 6.11E+00 | | | | 1.14E+01 | | | | | Iron | mg/kg | 4.48E+04 | 2.34E+03 | 3,90E+04 | | | YES | 2.27E+04 | | | YES | 2.02E+04 | | | YES | 3.40E+04 | | | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 2.66E+01 | J | | | 5.16E+01 | | YES | | 2.95E+01 | | | | 2.13E+01 | | | | | Magnesium | ma/ka | 7.66E+02 | NA | 9.59E+02 | | YES | | 3.87E+02 | | | | 3.61E+02 | | | | 2.68E+02 | | | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 8.90E+02 | | | YES | 4.75E+01 | | | | 8.14E+02 | | | YES | 3.26E+01 | | | | | Mercury | mg/kg | | 2.33E+00 | 1.09E-01 | J | YES | | 9.60E-02 | J | YES | *** | 1.38E-01 | | YES | | 2.34E-01 | | YES | | | Nickel | | | 1.54E+02 | 1.50E+01 | | YES | | 4.14E+00 | | | | 7.20E+00 | | | | 2.53E+00 | В | | | | Potassium | ma/ka | 7.11E+02 | NA | 6.39E+02 | | | | 1.89E+02 | В | | | 1.44E+02 | В | | | 1.16E+02 | В | | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | 1.85E+00 | | YES | | 5.50E-01 | J | YES | | 5.43E-01 | j | YES | | ND | | | | | Silver | mg/kg | 2.40E-01 | 3.91E+01 | ND | | | | | Sodium | | 7.02E+02 | NA | 2.32E+01 | J | | | ND | | | | 2.24E+01 | В | | | 2.38E+01 | В | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 | ND | | | | | Vanadium | mg/kg | 6.49E+01 | 5.31E+01 | 5.55E+01 | | | YES | 3.21E+01 | | | | 2.69E+01 | | | | 5.72E+01 | | | YES | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 3.45E+01 | J | | | 1.45E+01 | | | | 1.35E+01 | | | | 1.04E+01 | | | | | VOLATILE ORGANIC COMPOUNI | os | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | NR | | | | NR | | | | NR | | <u> </u> | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | | SEMIVOLATILE ORGANIC COMP | OUNDS | | | | | | | | | | | | | · | | | · | | | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | | PESTICIDES | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | | EXPLOSIVES | | | | | | | | | | | | | | | | .,, | , | | | | 2,4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | ND | | | | ND | | <u> </u> | 1 | ND | L | | | Table 2-4 # Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 18 of 19) | Sample L
Parc
Sample N
Sample
Sample | el
umber
Date | | | | HR-97Q
HR-9
QL00
23-Ju
1 - | 7Q
019
I-02 | | | HR-97Q
HR-9
QL00
24-Ju
1.5 - | 97Q
022
11-02 | | |--|---------------------|------------------|-------------------|----------|--|-------------------|-------|----------|--|---------------------|---| | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | | METALS | | | | | | | | | | | | | Aluminum | mg/kg | 1.36E+04 | 7.80E+03 | 7.99E+03 | | | YES | 7.02E+04 | | YES | YES | | Antimony | mg/kg | | 3.11E+00 | ND | | | | ND | | | | | Arsenic | mg/kg | 1.83E+01 | 4.26E-01 | 2.96E+00 | | | YES | 1.28E+01 | | | YES | | Barium | mg/kg | 2.34E+02 | | 9.59E+01 | | | | 1.20E+02 | | | | | Beryllium | mg/kg | 8.60E-01 | 9.60E+00 | 5.31E-01 | J | | | 6.91E-01 | J | | | | Cadmium | mg/kg | 2.20E-01 | 6.25E+00 | ND | | | | ND | | | | | Calcium | mg/kg | 6.37E+02 | NA | 2.10E+02 | | | | 1.24E+02 | | | | | Chromium | mg/kg | 3.83E+01 | 2.32E+01 | 8.20E+00 | | | | 4.43E+01 | | YES | YES | | Cobalt | mg/kg | 1.75E+01 |
4.68E+02 | 3.37E+00 | | | | 4.97E+00 | | | | | Copper | mg/kg | 1.94E+01 | 3.13E+02 | 5.83E+00 | | | | 1.87E+01 | | | | | Iron | mg/kg | 4.48E+04 | 2.34E+03 | 9.35E+03 | | | YES | 4.90E+04 | | YES | YES | | Lead | mg/kg | 3.85E+01 | 4.00E+02 | 2.75E+01 | J | | | 2.40E+01 | J | | | | Magnesium | mg/kg | 7.66E+02 | NA | 3.70E+02 | | | | 7.84E+02 | | YES | | | Manganese | mg/kg | 1.36E+03 | 3.63E+02 | 4.40E+02 | | | YES | 2.31E+02 | | | | | Mercury | mg/kg | 7.00E-02 | 2.33E+00 | ND | | | | 1.43E-01 | | YES | | | Nickel | mg/kg | 1.29E+01 | 1.54E+02 | 2.32E+00 | В | | | 1.64E+01 | | YES | | | Potassium | mg/kg | 7.11E+02 | NA | 3.24E+02 | J | | | 6.45E+02 | | | | | Selenium | mg/kg | 4.70E-01 | 3.91E+01 | ND | | | | 2.02E+00 | | YES | | | Silver | mg/kg | 2.40E-01 | 3.91E+01 | ND | | | | ND | | | | | Sodium | mg/kg | 7.02E+02 | NA | 2.15E+01 | J | | | 3.56E+01 | J | | | | Thallium | mg/kg | 1.40E+00 | 5.08E-01 | ND | | | | ND | | | | | Vanadium | mg/kg | 6.49E+01 | 5.31E+01 | 9.78E+00 | | | | 8.18E+01 | | YES | YES | | Zinc | mg/kg | 3.49E+01 | 2.34E+03 | 1.36E+01 | J | | | 3.74E+01 | J | YES | | | VOLATILE ORGANIC COMPOUNI | | | | | <u> </u> | | | | | | *************************************** | | 2-Butanone | mg/kg | NA | 4.66E+03 | NR | | | | ND | | | | | Acetone | mg/kg | NA | 7.76E+02 | NR | | | | 5.20E-02 | J | | | | Toluene | mg/kg | NA | 1.55E+03 | NR | | | | ND | | | | | p-Cymene | mg/kg | NA | 1.55E+03 | NR | | | | ND | | | | | SEMIVOLATILE ORGANIC COMP | | | | | ····· | | | | | | • | | Fluoranthene | mg/kg | NA | 3.09E+02 | NR | | | | ND | | | | | N-Nitrosodiphenylamine | mg/kg | NA | 1.29E+02 | NR | | | | ND | | | | | PESTICIDES | · · · · · · | | | | | | | | | | | | 4,4'-DDT | mg/kg | NA | 1.79E+00 | NR | | | | ND | | | | | Dieldrin | mg/kg | NA | 3.88E-02 | NR | | | | ND | | | | | Heptachlor | mg/kg | NA | 1.40E-01 | NR | | | | ND | | | | | alpha-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | ND | | | | | gamma-Chlordane | mg/kg | NA | 1.69E+00 | NR | | | | ND | | | | | EXPLOSIVES | | | | | · | • | | | * | • | | | 2.4-Dinitrotoluene | mg/kg | NA | 9.27E-01 | ND | | | | ND | | | T | | 2-Amino-4,6-dinitrotoluene | mg/kg | NA | 4.64E-01 | ND | | | | ND | | | | #### Subsurface Soil Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 19 of 19) Analyses performed using U.S. Environmental Protection Agency (EPA) SW-846 analytical methods. - ^a BKG Background. Concentration listed is two times (2x) the arithmetic mean of background metals concentration given in SAIC, 1998, Final Background Metals Survey Report, Fort McClellan, Alabama, July. - ^b Residential human health site-specific screening level (SSSL) as given in IT, 2000, Final Human Health and Ecological Screening Values and PAH Background Summary Report, Fort McClellan, Calhoun County, Alabama, July. - B Analyte detected in laboratory or field blank at concentration greater than the reporting limit. J Compound was positively identified; reported value is an estimated concentration. mg/kg - Milligrams per kilogram. NA - Not available. ND - Not detected. NR - Not requested. Table 2-5 # Groundwater Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Fort McClellan, Calhoun County, Alabama (Page 1 of 4) | Sample Lo
Parce | | | | | HR-145Q
HR-14 | | | | HR-145Q | | | <u>.</u> | HR-1460
HR-1 | | | |---------------------------|----------|------------------|-------------------|----------|------------------|----------|-------|----------|---------|------|-------|----------|-----------------|------|-------------| | Sample Nu | | | | | QR3 | | | | QR3 | | | | RK3 | | | | Sample I | | | | | 14-Au | | | | 12-Au | | | | 28-Au | | | | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | | METALS, DISSOLVED | <u> </u> | | | | | <u> </u> | | | | | | | <u> </u> | | | | Aluminum | mg/L | 2.34E+00 | 1.56E+00 | NR | | | | NR | | | | NR | | | | | Barium | mg/L | 1.27E-01 | 1.10E-01 | NR | | | | NR | | | | NR | | | | | Calcium | mg/L | 5.65E+01 | NA | NR | | | | NR | | | | NR | | | | | Iron | mg/L | 7.04E+00 | 4.69E-01 | NR | | | | NR | | | | NR | | | | | Lead | mg/L | 8.00E-03 | 1.50E-02 | NR | | | | NR | | | | NR | | | | | Magnesium | mg/L | 2.13E+01 | NA | NR | | | | NR | | | | NR | | | | | Manganese | mg/L | 5.81E-01 | 7.35E-02 | NR | | | | NR | | | | NR | | | | | Potassium | mg/L | 7.20E+00 | NA | NR | | | | NR | | | | NR | | | | | Selenium | mg/L | NA | 7.82E-03 | NR | | | | NR | | | | NR | | | | | Sodium | mg/L | 1.48E+01 | NA | NR | | | | NR | | | | NR | | | | | METALS, TOTAL | | , | | | <u> </u> | | | | | , | | | | | | | Aluminum | mg/L | 2.34E+00 | 1.56E+00 | 1.66E-01 | В | | | 2.36E-01 | В | | | 1.94E+00 | | | YES | | Arsenic | mg/L | 1.78E-02 | 4.46E-05 | ND | | | | ND | | | | 3.79E-03 | J | | YES | | Barium | mg/L | 1.27E-01 | 1.10E-01 | 1.55E-02 | | | | 3.11E-02 | | | | 1.37E-02 | | | | | Calcium | mg/L | 5.65E+01 | NA | 8.79E-01 | J | | | 3.50E+00 | | | | 5.63E-01 | J | | | | Cobalt | mg/L | 2.34E-02 | 9.39E-02 | 1.86E-02 | J | | | 2.04E-02 | | | | ND | | | | | Copper | mg/L | 2.55E-02 | 6.26E-02 | ND | | | | ND | | | | ND | | | | | Iron | mg/L | 7.04E+00 | 4.69E-01 | 2.22E-01 | J | | | 6.75E-01 | J | | YES | 7.75E-01 | J | | YES | | Lead | mg/L | 8.00E-03 | 1.50E-02 | ND | | | | ND | | | | ND | | | | | Magnesium | mg/L | 2.13E+01 | NA | 5.53E-01 | J | | | 1.23E+00 | | | | 2.71E-01 | J | | | | Manganese | mg/L | 5.81E-01 | 7.35E-02 | 1.17E-01 | | | YES | 1.69E+00 | | YES | YES | 2.72E-01 | | | YES | | Potassium | mg/L | 7.20E+00 | NA | 2.27E+00 | J | | | 1.62E+00 | В | | | 1.85E+00 | J | | | | Selenium | mg/L | NA | 7.82E-03 | ND | | | | ND | | | | ND | | | | | Sodium | mg/L | 1.48E+01 | NA | 8.31E-01 | J | | | 9.30E-01 | J | | | 7.89E-01 | J | | | | Zinc | mg/L | 2.20E-01 | 4.69E-01 | ND | | | | ND | | | | ND | | | | | VOLATILE ORGANIC COMPOUND | S | | | | | | | | | | | | | | | | Methylene chloride | mg/L | NA | 7.85E-03 | NR | | | | NR | | | | NR | | | | | EXPLOSIVES | | | | | | | | | | | | | | | | | 1,3,5-Trinitrobenzene | mg/L | NA | 4.69E-02 | ND | | | | ND | | | | ND | | | | | 2,4,6-Trinitrotoluene | mg/L | NA | 2.23E-03 | ND | | | | ND | | | | ND | | | | Table 2-5 # Groundwater Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Fort McClellan, Calhoun County, Alabama (Page 2 of 4) | Sample Lo
Parce
Sample Nu | el | | | | HR-146Q
HR-14 | 46Q | | | HR-147Q
HR-14
QN3 | 47Q | | | HR-148C
HR-1
QS3 | 48Q
001 | | |---------------------------------|-------|------------------|---|----------|------------------|------|-------|----------|-------------------------|----------|-------|----------|------------------------|------------|-------| | Sample I | Date | | | | 29-Au | g-02 | | | 23-Au | g-02 | | | 14-Au | × | | | Parameter | Units | BKG ^a | SSSL⁵ | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | | METALS, DISSOLVED | | | *************************************** | | | | | | | | | | | | | | Aluminum | mg/L | 2.34E+00 | 1.56E+00 | NR | | | | NR | | | | NR | | | | | Barium | mg/L | 1.27E-01 | 1.10E-01 | NR | | | | NR | | | | NR | | | | | Calcium | mg/L | 5.65E+01 | NA | NR | | | | NR | | | | NR | | | | | Iron | mg/L | 7.04E+00 | 4.69E-01 | NR | | | | NR | | | | NR | | | | | Lead | mg/L | 8.00E-03 | 1.50E-02 | NR | | | | NR | | | | NR | | | | | Magnesium | mg/L | 2.13E+01 | NA | NR | | | | NR | | | | NR | | | | | Manganese | mg/L | 5.81E-01 | 7.35E-02 | NR | | | | NR | | | | NR | | | | | Potassium | mg/L | 7.20E+00 | NA | NR | | | | NR | | | | NR | | | | | Selenium | mg/L | NA | 7.82E-03 | NR | | | | NR | | | | NR | | | | | Sodium | mg/L | 1.48E+01 | NA | NR | | | | NR | | | | NR | | | | | METALS, TOTAL | | | | | | | | | | | | | | | | | Aluminum | mg/L | 2.34E+00 | 1.56E+00 | 5.55E-01 | | | | 5.83E-02 | В | | | ND | | | | | Arsenic | mg/L | 1.78E-02 | 4.46E-05 | ND | | | | ND | | | | ND | | | | | Barium | mg/L | 1.27E-01 | 1.10E-01 | 2.30E-02 | | | | 1.40E-02 | | | | 1.30E-02 | · | | | | Calcium | mg/L | 5.65E+01 | NA | 8.34E-01 | J | | | 1.24E+00 | | | | 2.34E+00 | | | | | Cobalt | mg/L | 2.34E-02 | 9.39E-02 | ND | | | | ND | | <u> </u> | | ND | | | | | Copper | mg/L | 2.55E-02 | 6.26E-02 | ND | | | | ND | | | | ND | | | | | Iron | mg/L | 7.04E+00 | 4.69E-01 | 2.47E-01 | J | | | 6.74E-02 | J | | | 3.09E-02 | | | | | Lead | mg/L | 8.00E-03 | 1.50E-02 | 1.61E-03 | J | | | ND | | | | 1.38E-03 | | | | | Magnesium | mg/L | 2.13E+01 | NA | 3.56E-01 | J | | | 7.09E-01 | J | | | 9.27E-01 | J | | | | Manganese | mg/L | 5.81E-01 | 7.35E-02 | 1.48E-01 | | | YES | 3.91E-01 | | | YES | 6.54E-02 | | | | | Potassium | mg/L | 7.20E+00 | NA | 1.57E+00 | J | | | 2.44E+00 | J | | | 1.37E+00 | J | | | | Selenium | mg/L | NA | 7.82E-03 | ND | | | | ND | | | | ND | | | | | Sodium | mg/L | 1.48E+01 | NA | 8.23E-01 | J | | | 1.07E+00 | | | | 7.62E-01 | J | | | | Zinc | mg/L | 2.20E-01 | 4.69E-01 | ND | | | | ND | | | | ND | | | | | VOLATILE ORGANIC COMPOUND | S | | | | | | | | | | | | | | | | Methylene chloride | mg/L | NA | 7.85E-03 | NR | | | | NR | | | | 4.30E-04 | В | | | | EXPLOSIVES | | | | | | | | | | | | | | | | | 1,3,5-Trinitrobenzene | mg/L | NA | 4.69E-02 | ND | | | | ND | | | | 3.20E-04 | J | | | | 2,4,6-Trinitrotoluene | mg/L | NA | 2.23E-03 | ND | | | | ND | | | | ND | | | | Table 2-5 # Groundwater Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Fort McClellan, Calhoun County, Alabama (Page 3 of 4) | Sample Lo
Parce
Sample Nu
Sample I | l
ımber | | | | HR-94Q-
HR-9
RJ30
10-Se | 94Q
901 | | | HR-94Q-
HR-9
RJ30
4-Sep | 4Q
003 | d garde | | HR-95Q
HR-9
QW3
22-Au |
5Q
001 | | |---|------------|------------------|----------|----------|----------------------------------|------------|-------|----------|----------------------------------|-----------|---------|----------|--------------------------------|-----------|----------| | Parameter | Units | BKG ^a | SSSL⁵ | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | | METALS, DISSOLVED | | | | | | | | | | | | | | | | | Aluminum | mg/L | 2.34E+00 | 1.56E+00 | 5.99E-01 | | | | NR | | | | NR | | | | | Barium | mg/L | 1.27E-01 | 1.10E-01 | 2.17E-02 | | | | NR | | | | NR | | | | | Calcium | mg/L | 5.65E+01 | NA | 2.05E+00 | | | | NR | | | | NR | | | | | Iron | mg/L | 7.04E+00 | 4.69E-01 | 7.21E-01 | | | YES | NR | | | | NR | | | | | Lead | mg/L | 8.00E-03 | 1.50E-02 | 1.50E-03 | J | | | NR | | | | NR | | | | | Magnesium | mg/L | 2.13E+01 | NA | 1.13E+00 | | | | NR | | | | NR | | | | | Manganese | mg/L | 5.81E-01 | 7.35E-02 | 1.98E-01 | | | YES | NR | | | | NR | | | | | Potassium | mg/L | 7.20E+00 | NA | 2.92E+00 | J | | | NR | | | | NR | | | | | Selenium | mg/L | NA | 7.82E-03 | 3.37E-03 | В | | | NR | | | | NR | | | | | Sodium | mg/L | 1.48E+01 | NA | 9.12E-01 | В | | | NR | | | | NR | | | | | METALS, TOTAL | | | | | | | | | | | | | | | | | Aluminum | mg/L | 2.34E+00 | 1.56E+00 | 1.22E+00 | | | | 1.43E-01 | В | | | 1.55E-01 | В | | | | Arsenic | mg/L | 1.78E-02 | 4.46E-05 | ND | | | | ND | | | | ND | | | | | Barium | mg/L | 1.27E-01 | 1.10E-01 | 3.27E-02 | | | | 2.19E-02 | | | | 1.33E-02 | | | | | Calcium | mg/L | 5.65E+01 | NA | 2.03E+00 | | | | 1.49E+00 | | | | 2.17E+00 | | | | | Cobalt | mg/L | 2.34E-02 | 9.39E-02 | ND | | | | ND | | | | ND | | | | | Copper | mg/L | 2.55E-02 | 6.26E-02 | ND | | | | ND | | | | 1.39E-02 | | | | | Iron | mg/L | 7.04E+00 | 4.69E-01 | 1.83E+00 | | | YES | 1.18E-01 | J | | | 3.39E-01 | J | | | | Lead | mg/L | 8.00E-03 | 1.50E-02 | 2.84E-03 | J | | | ND | | | | ND | | | | | Magnesium | mg/L | 2.13E+01 | NA | 1.16E+00 | | | | 6.79E-01 | J | | | 1.01E+00 | | | | | Manganese | mg/L | 5.81E-01 | 7.35E-02 | 2.76E-01 | | | YES | 4.06E-01 | | | YES | 2.92E-01 | | | YES | | Potassium | mg/L | 7.20E+00 | NA | 3.36E+00 | J | | | 3.98E+00 | J | | | 2.68E+00 | J | | | | Selenium | mg/L | NA | 7.82E-03 | 4.62E-03 | В | | | 3.33E-03 | | | | ND | | | | | Sodium | mg/L | 1.48E+01 | NA | 8.77E-01 | В | | | 1.09E+00 | В | | | 1.26E+00 | | | | | Zinc | mg/L | 2.20E-01 | 4.69E-01 | ND | | | | ND | | | | 1.09E-01 | | | | | VOLATILE ORGANIC COMPOUND | S | | | | | | | | | , | | | | | | | Methylene chloride | mg/L | NA | 7.85E-03 | ND | | | | NR | | | | NR | | | <u> </u> | | EXPLOSIVES | | | | | | | | | | | | | | , | | | 1,3,5-Trinitrobenzene | mg/L | NA | 4.69E-02 | ND | | | | ND | | | | ND | | | | | 2,4,6-Trinitrotoluene | mg/L | NA | 2.23E-03 | ND | | | | ND | | <u> </u> | | ND | | | | # Groundwater Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Fort McClellan, Calhoun County, Alabama (Page 4 of 4) | Sample Lo | | | | | HR-95Q-
HR-9 | | | | HR-95Q
HR-9 | | | | HR-96Q
HR-9 | | | |---------------------------|-------|------------------|-------------------|----------|-----------------|------|-------|----------|----------------|------|-------|----------|----------------|------|----------| | Sample Nu | ımber | | | | QW3 | 002 | | | QW3 | 004 | | | QP3 | 001 | ľ | | Sample I | | | | | 20-Au | g-02 | | | 21-Au | g-02 | | | 15-Au | g-02 | | | Parameter | Units | BKG ^a | SSSL ^b | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | Result | Qual | >BKG | >SSSL | | METALS, DISSOLVED | | | | | | | | | | | | | | | | | Aluminum | mg/L | 2.34E+00 | 1.56E+00 | NR | | | | NR | | | | NR | | | | | Barium | mg/L | 1.27E-01 | 1.10E-01 | NR | | | | NR | | | | NR | | | | | Calcium | mg/L | 5.65E+01 | NA | NR | | | | NR | | | | NR | | | | | Iron | mg/L | 7.04E+00 | 4.69E-01 | NR | | | | NR | | | | NR | | | | | Lead | mg/L | 8.00E-03 | 1.50E-02 | NR | | , | | NR | | | | NR | | | | | Magnesium | mg/L | 2.13E+01 | NA | NR | | | | NR | | | | NR | | | | | Manganese | mg/L | 5.81E-01 | 7.35E-02 | NR | | | | NR | | | | NR | | | | | Potassium | mg/L | 7.20E+00 | NA | NR | | | | NR | | | | NR | | | <u> </u> | | Selenium | mg/L | NA | 7.82E-03 | NR | | | | NR | | | | NR | | | | | Sodium | mg/L | 1.48E+01 | NA | NR | | | | NR | | | | NR | | | | | METALS, TOTAL | | | | | | | | | | | | | | | | | Aluminum | mg/L | 2.34E+00 | 1.56E+00 | ND | | | | ND | | | | 2.87E-01 | | | | | Arsenic | mg/L | 1.78E-02 | 4.46E-05 | ND | | | | ND | | | | ND | | | | | Barium | mg/L | 1.27E-01 | 1.10E-01 | 7.63E-03 | | | | 1.26E-02 | | | | 1.27E-02 | | | | | Calcium | mg/L | 5.65E+01 | NA | 9.59E-01 | J | | | 1.08E+00 | | | | 1.93E+00 | | | | | Cobalt | mg/L | 2.34E-02 | 9.39E-02 | ND | | | | ND | | | | 2.29E-02 | | | | | Copper | mg/L | 2.55E-02 | 6.26E-02 | ND | | | | ND | | | | ND | | | | | Iron | mg/L | 7.04E+00 | 4.69E-01 | 1.05E-02 | J | | | 3.74E-02 | J | | | 5.20E-01 | J | | YES | | Lead | mg/L | 8.00E-03 | 1.50E-02 | ND | | | | ND | | | | ND | | | | | Magnesium | mg/L | 2.13E+01 | NA | 4.01E-01 | | | | 5.87E-01 | | | | 7.60E-01 | J | | | | Manganese | mg/L | 5.81E-01 | 7.35E-02 | 7.94E-02 | | | YES | 4.50E-02 | J | | | 2.37E-01 | | | YES | | Potassium | mg/L | 7.20E+00 | NA | 2.43E+00 | J | | | ND | | | | 2.35E+00 | В | | ļl | | Selenium | mg/L | NA | 7.82E-03 | ND | | | | ND | | | | ND | | | | | Sodium | mg/L | 1.48E+01 | NA | 8.91E-01 | J | | | 7.89E-01 | В | | | 1.40E+00 | | | | | Zinc | mg/L | 2.20E-01 | 4.69E-01 | ND | | | | ND | | | | ND | | | | | VOLATILE ORGANIC COMPOUND | S | | | | | | | | | | | | | | | | Methylene chloride | mg/L | NA | 7.85E-03 | ND | | | | NR | | | | NR | | | L | | EXPLOSIVES | | | | | | | | | | | | | | | | | 1,3,5-Trinitrobenzene | mg/L | NA | 4.69E-02 | ND | | | | ND | | | | ND | | | <u> </u> | | 2,4,6-Trinitrotoluene | mg/L | NA | 2.23E-03 | ND | | | | ND | | | | 6.80E-04 | J | | | Analyses performed using U.S. Environmental Protection Agency (EPA) SW-846 analytical methods. mg/L - Milligrams per liter. NA - Not available. ND - Not detected. NR - Not requested. ^a BKG - Background. Concentration listed is two times (2x) the arithmetic mean of background metals concentration given in SAIC, 1998, Final Background Metals Survey Report, Fort McClellan, Alabama, July. ^b Residential human health site-specific screening level (SSSL) as given in IT, 2000, Final Human Health and Ecological Screening Values and PAH Background Summary Report, Fort McClellan, Calhoun County, Alabama, July. B - Analyte detected in laboratory or field blank at concentration greater than the reporting limit. J - Compound was positively identified; reported value is an estimated concentration. # Surface Water Analytical Results Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Fort McClellan, Calhoun County, Alabama | | Sample | Location | | I | | HR-13 | 1Q-SW/S | D01 | | | HR-14 | 15Q-SW/S | D02 | | | HR-9 | 5Q-SW/S | D01 | | |---------------------|--------|------------------|-------------------|------------------|----------|-------|----------|-------|------|----------|-------|----------|-------|------|----------|------|-----------|-------|------| | | Par | cel | | | | ŀ | IR-131Q | | | | | HR-145Q | | | | | HR-95Q | | | | | Sample | Number | | | | | QY2001 | | | | (| R2003R | | | | | QW2001 | | | | | Sampl | e Date | | Ì | | 1 | 8-Jul-02 | | | | (| 6-Sep-02 | | | | | 18-Jul-02 | | | | Parameter | Units | BKG ^a | SSSL ^b | ESV ^b | Result | Qual | >BKG | >SSSL | >ESV | Result | Qual | >BKG | >SSSL | >ESV | Result | Qual | >BKG | >SSSL | >ESV | | METALS | Aluminum | mg/L | 5.26E+00 | 1.53E+01 | 8.70E-02 | 1.62E-01 | J | | | YES | 3.38E-01 | | | | YES | 1.17E-01 | J | | | YES | | Barium | mg/L | 7.54E-02 | 1.10E+00 | 3.90E-03 | 2.27E-02 | | | | YES | 3.46E-02 | | | | YES | 2.18E-02 | | | | YES | | Calcium | mg/L | 2.52E+01 | NA | 1.16E+02 | 9.13E-01 | J | | | | 3.78E-01 | J | | | | 2.65E-01 | J | | | | | Cobalt | mg/L | NA | 9.31E-01 | 3.00E-03 | 1.83E-02 | J | | | YES | ND | | | | | ND | | | | | | Copper | mg/L | 1.27E-02 | 6.23E-01 | 6.54E-03 | 6.28E-03 | J | | | | ND | | | | | 6.90E-03 | | | | YES | | Iron | mg/L | 1.96E+01 | 4.70E+00 | 1.00E+00 | 3.32E-01 | J | | | | 5.37E-01 | J | | | | 7.07E-01 | J | | | | | Lead | mg/L | 8.67E-03 | 1.50E-02 | 1.32E-03 | ND | | | | | 2.35E-03 | | | | YES | ND | | | | | | Magnesium | mg/L | 1.10E+01 | NA | 8.20E+01 | 3.04E-01 | J | | | | 4.12E-01 | J | | | | 3.24E-01 | J | | | ıl | | Manganese | mg/L | 5.65E-01 | 6.40E-01 | 8.00E-02 | 9.78E-03 | J | | | | 5.89E-02 | J | | | | 2.86E-02 | J | | | | | Potassium | mg/L | 2.56E+00 | NA | 5.30E+01 | 1.32E+00 | J | | | | 2.62E+00 | J | YES | | | 2.29E+00 | J | | | | | Sodium | mg/L | 3.44E+00 | NA | 6.80E+02 | 1.16E+00 | | | | | 1.08E+00 | | | | | 1.16E+00 | | | | | | VOLATILE ORGANIC CO | MPOUN | DS | | | | | | | | | | | | | | | | | | | Methylene chloride | mg/L | NA | 1.42E-01 | 1.93E+00 | NR | | | | | NR | | | | | 3.00E-04 | В | | | | Analyses performed using U.S. Environmental Protection Agency (EPA) SW-846 analytical methods. mg/L - Milligrams per liter. NA - Not available. ND - Not detected. NR - Not requested. ^a BKG - Background. Concentration listed is two times (2x) the arithmetic mean of background metals concentration given in SAIC, 1998, Final Background Metals Survey Report, Fort McClellan, Alabama, July. ^b Recreational site user site-specific screening level (SSSL) and ecological screening value (ESV) as given in IT, 2000, Final Human Health and Ecological Screening Values and PAH Background Summary Report, Fort McClellan, Calhoun County, Alabama, July. B - Analyte detected in laboratory or field blank at concentration greater than the reporting limit. J - Compound was positively identified; reported value is an estimated
concentration. #### **Sediment Analytical Results** Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama | | Sample Lo
Parce | el | | | | | 31Q-SW/S
HR-131Q | D01 | | | ı | 45Q-SW/S
HR-145Q | D02 | | | | 5Q-SW/S
HR-95Q | D01 | | |---------------------------|--------------------|------------------|----------|------------------|----------|------|---------------------|-------|------|----------|------|---------------------|-------|------|----------|------|-------------------|-------|------| | | Sample N | | | | | | QY1001 | | | | | 2R1002R | | | | | QW1001 | | | | | Sample | | | | | • | 18-Jul-02 | | | | (| 6-Sep-02 | | | | | 18-Jul-02 | | | | | Sample Dep | th (Feet) | | | | | 05 | | | | | 05 | | | | | 05 | | | | Parameter | Units | BKG ^a | SSSL⁵ | ESV ^b | Result | Qual | >BKG | >SSSL | >ESV | Result | Qual | >BKG | >SSSL | >ESV | Result | Qual | >BKG | >SSSL | >ESV | | METALS | Aluminum | mg/kg | 8.59E+03 | 1.15E+06 | | 6.66E+03 | | | | | 2.62E+03 | | | | | 4.14E+03 | | | | | | Arsenic | mg/kg | 1.13E+01 | | | | | | | | 2.34E+00 | | | | | 2.60E+00 | | | | | | Barium | mg/kg | 9.89E+01 | | NA | 1.25E+02 | | YES | | | 8.01E+01 | | | | | 6.29E+01 | | | | | | Beryllium | mg/kg | 9.70E-01 | 1.50E+02 | NA | 6.50E-01 | J | | | | 6.13E-01 | J | | | | 4.86E-01 | | | | | | Calcium | mg/kg | 1.11E+03 | NA | NA | 4.99E+02 | | | | | 2.50E+02 | | | | | 1.66E+02 | J | ļ | | | | Chromium | mg/kg | 3.12E+01 | 2.79E+03 | | 1.60E+01 | | | | | 4.73E+00 | | | | | 6.38E+00 | | | | | | Cobalt | mg/kg | 1.10E+01 | 6.72E+04 | 5.00E+01 | 1.93E+01 | | YES | | | 3.87E+00 | | | | | 4.10E+00 | | | | | | Copper | mg/kg | 1.71E+01 | 4.74E+04 | 1.87E+01 | 2.95E+01 | | YES | | YES | 7.97E+00 | | | | | 1.58E+01 | J | | | | | Iron | mg/kg | 3.53E+04 | 3.59E+05 | NA | 1.50E+04 | | | | | 1.83E+04 | | | | | 1.51E+04 | | | | | | Lead | mg/kg | 3.78E+01 | 4.00E+02 | 3.02E+01 | 3.04E+01 | | | | YES | 1.94E+01 | | | | | 3.47E+01 | | | ļ | YES | | Magnesium | mg/kg | 9.06E+02 | NA | NA | 3.11E+02 | | | | | 1.99E+02 | | | | | 1.85E+02 | | | | | | Manganese | mg/kg | 7.12E+02 | 4.38E+04 | NA | 9.02E+02 | | YES | | | 3.16E+02 | | | | | 2.51E+02 | J | | | | | Nickel | mg/kg | 1.30E+01 | 1.76E+04 | 1.59E+01 | 9.51E+00 | | | | | 3.93E+00 | | | | | 2.52E+00 | | | | | | Potassium | mg/kg | 1.01E+03 | | NA | 9.09E+02 | | | | | 1.12E+03 | | YES | | | 9.56E+02 | | | | | | Selenium | mg/kg | 7.20E-01 | 5.96E+03 | NA | 9.19E-01 | J | YES | | | ND | | | | | 7.36E-01 | | YES | | | | Sodium | mg/kg | 6.92E+02 | NA | NA | ND | | | | | 2.37E+01 | J | | | | 2.32E+01 | J | | | | | Vanadium | mg/kg | 4.09E+01 | 4.83E+03 | NA | 1.11E+01 | | | | | 6.58E+00 | | | | | 8.39E+00 | | | | | | Zinc | mg/kg | 5.27E+01 | 3.44E+05 | 1.24E+02 | 3.42E+01 | | | | | 7.04E+00 | | | | | 1.05E+01 | J | <u> </u> | | | | TOTAL ORGANIC CAR | BON | Total Organic Carbon | mg/kg | NA | NA | NA | 3.73E+04 | | | | | 3.53E+03 | | | | | 8.86E+03 | | | | | | VOLATILE ORGANIC C | OMPOUNDS | Acetone | mg/kg | NA | 1.03E+05 | 4.53E-01 | NR | | | | | NR | | | | | 5.40E-02 | J | | | | Analyses performed using U.S. Environmental Protection Agency (EPA) SW-846 analytical methods. NA - Not available. ND - Not detected. NR - Not requested. ^a BKG - Background. Concentration listed is two times (2x) the arithmetic mean of background metals concentration given in SAIC, 1998, *Final Background Metals Survey Report, Fort McClellan, Alabama*, July. ^b Recreational site user site-specific screening level (SSSL) and ecological screening value (ESV) as given in IT, 2000, Final Human Health and Ecological Screening Values and PAH Background Summary Report, Fort McClellan, Calhoun County, Alabama, July. B - Analyte detected in laboratory or field blank at concentration greater than the reporting limit. J - Compound was positively identified; reported value is an estimated concentration. mg/kg - Milligrams per kilogram. #### Table 3-1 # Summary of Data Quality Objectives Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Remedial Investigation Fort McClellan, Calhoun County, Alabama | | Available | | Media of | Data Uses and | | | | |--|---|--|---|---|--|--|--| | Users | Data | Conceptual Site Model | Concern | Objectives | Data Types | Analytical Level | Data Quantity | | EPA, ADEM
USACE, DOD
FTMC, IT Corporation
Other contractors, and
possible future land
users | Previous site investigations by IT show potential metals contamination in soil. | Contaminant Source Parcels 94Q, 95Q, 96Q, 97Q, 131Q-X, 144Q-X, 145Q-X, 146Q, 147Q-X, 148Q-X Migration Pathways Rain runoff and erosion to surface soil, infiltration and leaching to subsurface soil and groundwater, dust emissions and volatilization to ambient air, runoff to surface water, erosion to sediment, biotransfer to deer through browsing, and ecological receptors through food web interactions. Potential Human Health Receptors | Surface soil Subsurface Soil Groundwater Surface water Sediment | RI to delineate vertical and horizontal extent of | Surface soil VOCs, SVOCs, metals, nitroaromatic/nitramine explosives, chlorinated and organophosphorus pesticides, chlorinated herbicides and PCBs Subsurface Soil VOCs, SVOCs, metals, nitroaromatic/nitramine explosives, chlorinated and organophosphorus pesticides, chlorinated herbicides and PCBs Groundwater VOCs, SVOCs, metals, nitroaromatic/nitramine explosives, chlorinated and organophosphorus | Definitive data in data packages (as defined in USACE EM200-1-6) Definitive data in data packages (as defined in USACE EM200-1-6) Definitive data in data packages (as defined in data packages (as defined in | 100 surface soil samples + QC 100 subsurface soil samples + QC 25 groundwater samples + QC | | | | Recreational site user (current and future) Resident (future) Potential Ecological Receptors Terrestrial and aquatic plants Terrestrial and aquatic herbivores Terrestrial and aquatic invertivores Terrestrial and aquatic carnivores Piscivores PSSC Primarily metals in soil | | | pesticides, chlorinated herbicides and PCBs Surface water VOCs, SVOCs, metals, nitroaromatic/nitramine explosives, chlorinated and organophosphorus pesticides, chlorinated herbicides and PCBs Sediment VOCs, SVOCs, metals, nitroaromatic/nitramine explosives, chlorinated and organophosphorus pesticides, chlorinated herbicides and PCBs; plus TOC and grain size | data packages
(as defined in
USACE EM200-1-6) | 30 surface water samples + QC 30 sediment samples + QC | ADEM - Alabama Department of Environmental Management. EPA - U.S. Environmental Protection Agency. FTMC - Fort McClellan. PSSC - Potential site-specific chemical. QC - Quality control. RI - Remedial investigation. TOC - Total organic carbon PCB - polychlorinated biphenyls VOC - Volatile Organic Compounds. SVOC - Semi-volatile Organic Compounds. EM200-1-6 - USACE Engineering Manual, Chemical Quality Assurance for HTRW Projects, October 10, 1997. USACE - U.S. Army Corps of Engineers. Table 4-1 Page 1 of 10 | XRF Grid Node | Easting | Northing | |---------------|---------|----------| | 0, 0 | 694829 | 1175583 | | 0, N200 | 694829 | 1175783 | | 0, N400 | 694829 | 1175983 | | 0, N600 | 694829 | 1176183 | | 0, N800 | 694829 | 1176383 | | 0, N1000 | 694829 | 1176583 | | 0, N1200 | 694829 | 1176783 | | 0, N1400 | 694829 | 1176983 | | 0, N1600 | 694829 | 1177183 | | 0, N1800 | 694829 | 1177383 | | 0, N2000 | 694829 | 1177583 | | 0, N2200 | 694829 | 1177783 | | 0, N2400 | 694829 | 1177983 | | 0, N2600 | 694829 | 1178183 | | 0, S200 | 694829 | 1175383 | | 0, S400 | 694829 | 1175183 | | 0, S600 | 694829 | 1174983 | | 0, S800 | 694829 | 1174783 | | 0, S1000 | 694829 | 1174583 | | 0, S1200 | 694829 | 1174383 | | 0, S1400 | 694829 | 1174183 | | 0, S1600 | 694829 | 1173983 | | 0, S1800 | 694829 | 1173783 | | 0, S2000 | 694829 | 1173583 | | 0, S2200 | 694829 | 1173383 | | 0, S2400 | 694829 | 1173183 | | E200, 0 | 695029 | 1175583 | | E200, N200 | 695029 | 1175783 | | E200, N400 | 695029 | 1175983 | | E200, N600 | 695029 | 1176183 | | E200, N800 | 695029 | 1176383 | | E200, N1000 | 695029 | 1176583 | | E200, N1200 | 695029 | 1176783 | | E200, N1400 | 695029 | 1176983 | | E200, N1600 | 695029 | 1177183 | | E200, N1800 | 695029 | 1177383 | | E200, N2000 | 695029 | 1177583 | | E200, N2200 | 695029 | 1177783 | | E200, N2400 | 695029 | 1177983 | | E200, N2600 |
695029 | 1178183 | | E200, S200 | 695029 | 1175383 | | E200, S400 | 695029 | 1175183 | | E200, S600 | 695029 | 1174983 | | E200, S800 | 695029 | 1174783 | | E200, S1000 | 695029 | 1174583 | | E200, S1200 | 695029 | 1174383 | | E200, S1400 | 695029 | 1174183 | | E200, S1600 | 695029 | 1173983 | | E200, S1800 | 695029 | 1173783 | | E200, S2000 | 695029 | 1173583 | | E200, S2200 | 695029 | 1173383 | | E200, S2400 | 695029 | 1173183 | Table 4-1 Page 2 of 10 | XRF Grid Node | Easting | Northing | |---------------|---------|----------| | E400, 0 | 695229 | 1175583 | | E400, N200 | 695229 | 1175783 | | E400, N400 | 695229 | 1175983 | | E400, N600 | 695229 | 1176183 | | E400, N800 | 695229 | 1176383 | | E400, N1000 | 695229 | 1176583 | | E400, N1200 | 695229 | 1176783 | | E400, N1400 | 695229 | 1176983 | | E400, N1600 | 695229 | 1177183 | | E400, N1800 | 695229 | 1177383 | | E400, N2000 | 695229 | 1177583 | | E400, N2200 | 695229 | 1177783 | | E400, N2400 | 695229 | 1177983 | | E400, N2600 | 695229 | 1178183 | | E400, S200 | 695229 | 1175383 | | E400, S400 | 695229 | 1175183 | | E400, S600 | 695229 | 1174983 | | E400, S800 | 695229 | 1174783 | | E400, S1000 | 695229 | 1174583 | | E400, S1200 | 695229 | 1174383 | | E400, S1400 | 695229 | 1174183 | | E400, S1600 | 695229 | 1173983 | | E400, S1800 | 695229 | 1173783 | | E400, S2000 | 695229 | 1173583 | | E400, S2200 | 695229 | 1173383 | | E400, S2400 | 695229 | 1173183 | | E600, 0 | 695429 | 1175583 | | E600, N200 | 695429 | 1175783 | | E600, N400 | 695429 | 1175983 | | E600, N600 | 695429 | 1176183 | | E600, N800 | 695429 | 1176383 | | E600, N1000 | 695429 | 1176583 | | E600, N1200 | 695429 | 1176783 | | E600, N1400 | 695429 | 1176983 | | E600, N1600 | 695429 | 1177183 | | E600, N1800 | 695429 | 1177383 | | E600, N2000 | 695429 | 1177583 | | E600, N2200 | 695429 | 1177783 | | E600, N2400 | 695429 | 1177983 | | E600, N2600 | 695429 | 1178183 | | E600, S200 | 695429 | 1175383 | | E600, S400 | 695429 | 1175183 | | E600, S600 | 695429 | 1174983 | | E600, S800 | 695429 | 1174783 | | E600, S1000 | 695429 | 1174583 | | E600, S1200 | 695429 | 1174383 | | E600, S1400 | 695429 | 1174183 | | E600, S1600 | 695429 | 1173983 | | E600, S1800 | 695429 | 1173783 | | E600, S2000 | 695429 | 1173583 | | E600, S2200 | 695429 | 1173383 | | E600, S2400 | 695429 | 1173183 | Table 4-1 Page 3 of 10 | XRF Grid Node | Easting | Northing | |-----------------------------|------------------|--------------------| | E800, 0 | 695629 | 1175583 | | E800, N200 | 695629 | 1175783 | | E800, N400 | 695629 | 1175983 | | E800, N600 | 695629 | 1176183 | | E800, N800 | 695629 | 1176383 | | E800, N1000 | 695629 | 1176583 | | E800, N1200 | 695629 | 1176783 | | E800, N1400 | 695629 | 1176983 | | E800, N1600 | 695629 | 1177183 | | E800, N1800 | 695629 | 1177383 | | E800, N2000 | 695629 | 1177583 | | E800, N2200 | 695629 | 1177783 | | E800, N2400 | 695629 | 1177983 | | E800, N2600 | 695629 | 1178183 | | E800, S200 | 695629 | 1175383 | | E800, S400 | 695629 | 1175183 | | E800, S600 | 695629 | 1174983 | | E800, S800 | 695629 | 1174783 | | E800, S1000 | 695629 | 1174583 | | E800, S1200 | 695629 | 1174383 | | E800, S1400 | 695629 | 1174183 | | E800, S1600 | 695629 | 1173983 | | E800, S1800 | 695629 | 1173783 | | E800, S2000 | 695629 | 1173583 | | E800, S2200 | 695629 | 1173383 | | E800, S2400 | 695629 | 1173183 | | E1000, 0 | 695829 | 1175583 | | E1000, N200 | 695829 | 1175783 | | E1000, N400 | 695829 | 1175983 | | E1000, N600 | 695829 | 1176183 | | E1000, N800 | 695829 | 1176383 | | E1000, N1000 | 695829 | 1176583 | | E1000, N1200 | 695829 | 1176783 | | E1000, N1400 | 695829 | 1176983 | | E1000, N1600 | 695829 | 1177183 | | E1000, N1800 | 695829 | 1177383 | | E1000, N2000 | 695829 | 1177583 | | E1000, N2200 | 695829 | 1177783 | | E1000, N2400 | 695829 | 1177983 | | E1000, N2600 | 695829 | 1178183 | | E1000, N2000 | 695829 | 1175383 | | E1000, S200 | 695829 | 1175183 | | E1000, S400 | | 1174983 | | · | 695829 | | | E1000, S800
E1000, S1000 | 695829
695829 | 1174783
1174583 | | l | | | | E1000, S1200 | 695829 | 1174383 | | E1000, S1400 | 695829 | 1174183 | | E1000, S1600 | 695829 | 1173983 | | E1000, S1800 | 695829 | 1173783 | | E1000, S2000 | 695829 | 1173583 | | E1000, S2200 | 695829 | 1173383 | | E1000, S2400 | 695829 | 1173183 | Table 4-1 Page 4 of 10 | XRF Grid Node | Easting | Northing | |---------------|---------|----------| | E1200, 0 | 696029 | 1175583 | | E1200, N200 | 696029 | 1175783 | | E1200, N400 | 696029 | 1175983 | | E1200, N600 | 696029 | 1176183 | | E1200, N800 | 696029 | 1176383 | | E1200, N1000 | 696029 | 1176583 | | E1200, N1200 | 696029 | 1176783 | | E1200, N1400 | 696029 | 1176983 | | E1200, N1600 | 696029 | 1177183 | | E1200, N1800 | 696029 | 1177383 | | E1200, N2000 | 696029 | 1177583 | | E1200, N2200 | 696029 | 1177783 | | E1200, N2400 | 696029 | 1177983 | | E1200, N2600 | 696029 | 1178183 | | E1200, S200 | 696029 | 1175383 | | E1200, S400 | 696029 | 1175183 | | E1200, S600 | 696029 | 1174983 | | E1200, S800 | 696029 | 1174783 | | E1200, S1000 | 696029 | 1174583 | | E1200, S1200 | 696029 | 1174383 | | E1200, S1400 | 696029 | 1174183 | | E1200, S1600 | 696029 | 1173983 | | E1200, S1800 | 696029 | 1173783 | | E1200, S2000 | 696029 | 1173583 | | E1200, S2200 | 696029 | 1173383 | | E1200, S2400 | 696029 | 1173183 | | E1400, N400 | 696229 | 1175983 | | E1400, N600 | 696229 | 1176183 | | E1400, N800 | 696229 | 1176383 | | E1400, N1000 | 696229 | 1176583 | | E1400, N1200 | 696229 | 1176783 | | E1400, N1400 | 696229 | 1176983 | | E1400, N1600 | 696229 | 1177183 | | E1400, N1800 | 696229 | 1177383 | | E1400, N2000 | 696229 | 1177583 | | E1400, N2200 | 696229 | 1177783 | | E1400, N2400 | 696229 | 1177983 | | E1400, N2600 | 696229 | 1178183 | | E1600, N400 | 696429 | 1175983 | | E1600, N600 | 696429 | 1176183 | | E1600, N800 | 696429 | 1176383 | | E1600, N1000 | 696429 | 1176583 | | E1600, N1200 | 696429 | 1176783 | | E1600, N1400 | 696429 | 1176983 | | E1600, N1600 | 696429 | 1177183 | | E1600, N1800 | 696429 | 1177383 | | E1600, N2000 | 696429 | 1177583 | | E1600, N2200 | 696429 | 1177783 | | E1600, N2400 | 696429 | 1177983 | | E1600, N2600 | 696429 | 1178183 | Table 4-1 Page 5 of 10 | XRF Grid Node | Easting | Northing | |---------------|---------|----------| | E1800, N400 | 696629 | 1175983 | | E1800, N600 | 696629 | 1176183 | | E1800, N800 | 696629 | 1176383 | | E1800, N1000 | 696629 | 1176583 | | E1800, N1200 | 696629 | 1176783 | | E1800, N1400 | 696629 | 1176983 | | E1800, N1600 | 696629 | 1177183 | | E1800, N1800 | 696629 | 1177383 | | E1800, N2000 | 696629 | 1177583 | | E1800, N2200 | 696629 | 1177783 | | E1800, N2400 | 696629 | 1177983 | | E1800, N2600 | 696629 | 1178183 | | E2000, N400 | 696829 | 1175983 | | E2000, N600 | 696829 | 1176183 | | E2000, N800 | 696829 | 1176383 | | E2000, N1000 | 696829 | 1176583 | | E2000, N1200 | 696829 | 1176783 | | E2000, N1400 | 696829 | 1176983 | | E2000, N1600 | 696829 | 1177183 | | E2000, N1800 | 696829 | 1177383 | | E2000, N2000 | 696829 | 1177583 | | E2000, N2200 | 696829 | 1177783 | | E2000, N2400 | 696829 | 1177983 | | E2000, N2600 | 696829 | 1178183 | | W200, 0 | 694629 | 1175583 | | W200, N200 | 694629 | 1175783 | | W200, N400 | 694629 | 1175983 | | W200, N600 | 694629 | 1176183 | | W200, N800 | 694629 | 1176383 | | W200, N1000 | 694629 | 1176583 | | W200, N1200 | 694629 | 1176783 | | W200, N1400 | 694629 | 1176983 | | W200, N1600 | 694629 | 1177183 | | W200, N1800 | 694629 | 1177383 | | W200, N2000 | 694629 | 1177583 | | W200, N2200 | 694629 | 1177783 | | W200, N2400 | 694629 | 1177983 | | W200, N2600 | 694629 | 1178183 | | W200, S200 | 694629 | 1175383 | | W200, S400 | 694629 | 1175183 | | W200, S600 | 694629 | 1174983 | | W200, S800 | 694629 | 1174783 | | W200, S1000 | 694629 | 1174583 | | W200, S1200 | 694629 | 1174383 | | W200, S1400 | 694629 | 1174183 | | W200, S1600 | 694629 | 1173983 | | W200, S1800 | 694629 | 1173783 | | W200, S2000 | 694629 | 1173583 | | W200, S2200 | 694629 | 1173383 | | W200, S2400 | 694629 | 1173183 | Table 4-1 Page 6 of 10 | XRF Grid Node | Easting | Northing | |----------------------------|---------|----------| | W400, 0 | 694429 | 1175583 | | W400, N200 | 694429 | 1175783 | | W400, N400 | 694429 | 1175983 | | W400, N600 | 694429 | 1176183 | | W400, N800 | 694429 | 1176383 | | W400, N1000 | 694429 | 1176583 | | W400, N1200 | 694429 | 1176783 | | W400, N1400 | 694429 | 1176983 | | W400, N1600 | 694429 | 1177183 | | W400, N1800 | 694429 | 1177383 | | W400, N2000 | 694429 | 1177583 | | W400, N2200 | 694429 | 1177783 | | W400, N2400 | 694429 | 1177983 | | W400, N2600 | 694429 | 1178183 | | W400, S200 | 694429 | 1175383 | | W400, S400 | 694429 | 1175183 | | W400, S600 | 694429 | 1174983 | | W400, S800 | 694429 | 1174783 | | W400, S1000 | 694429 | 1174583 | | W400, S1200 | 694429 | 1174383 | | W400, S1400 | 694429 | 1174183 | | W400, S1600 | 694429 | 1173983 | | W400, S1800 | 694429 | 1173783 | | W400, S2000 | 694429 | 1173583 | | W400, S2200 | 694429 | 1173383 | | W400, S2400 | 694429 | 1173183 | | W600, 0 | 694229 | 1175583 | | W600, N200 | 694229 | 1175783 | | W600, N400 | 694229 | 1175983 | | W600, N600 | 694229 | 1176183 | | W600, N800 | 694229 | 1176383 | | W600, N1000 | 694229 | 1176583 | | W600, N1200 | 694229 | 1176783 | | W600, N1400 | 694229 | 1176983 | | W600, N1600 | 694229 | 1177183 | | W600, N1800 | 694229 | 1177383 | | W600, N2000 | 694229 | 1177583 | | | 694229 | 1177783 | | W600, N2200 | | 1177983 | | W600, N2400
W600, N2600 | 694229 | | | | 694229 | 1178183 | | W600, N200 | 694229 | 1175383 | | W600, N400 | 694229 | 1175183 | | W600, N600 | 694229 | 1174983 | | W600, N800 | 694229 | 1174783 | | W600, N1000 | 694229 | 1174583 | | W600, N1200 | 694229 | 1174383 | | W600, N1400 | 694229 | 1174183 | | W600, N1600 | 694229 | 1173983 | | W600, N1800 | 694229 | 1173783 | | W600, N2000 | 694229 | 1173583 | | W600, N2200 | 694229 | 1173383 | | W600, N2400 | 694229 | 1173183 | Table 4-1 Page 7 of 10 | XRF
Grid Node | Easting | Northing | |------------------------------|-------------------------------|--------------------| | W800, 0 | 694029 | 1175583 | | W800, N200 | 694029 | 1175783 | | W800, N400 | 694029 | 1175983 | | W800, N600 | 694029 | 1176183 | | W800, N800 | 694029 | 1176383 | | W800, N1000 | 694029 | 1176583 | | W800, N1200 | 694029 | 1176783 | | W800, N1400 | 694029 | 1176983 | | W800, N1600 | 694029 | 1177183 | | W800, N1800 | 694029 | 1177383 | | W800, N2000 | 694029 | 1177583 | | W800, N2200 | 694029 | 1177783 | | W800, N2400 | 694029 | 1177983 | | W800, N2600 | 694029 | 1178183 | | W800, S200 | 694029 | 1175383 | | W800, S400 | 694029 | 1175183 | | W800, S600 | 694029 | 1174983 | | W800, S800 | 694029 | 1174783 | | W800, S1000 | 694029 | 1174783 | | W800, S1200 | 694029 | 1174383 | | W800, S1400 | 694029 | 1174183 | | W800, S1600 | 694029 | 1173983 | | W800, S1800 | 694029 | 1173783 | | W800, S2000 | 694029 | | | W800, S2000
W800, S2200 | 694029 | 1173583
1173383 | | W800, S2400 | 694029 | 1173183 | | W1000, 02400 | 693829 | | | W1000, 0
W1000, N200 | 693829 | 1175583 | | W1000, N200 | 693829 | 1175783 | | W1000, N600 | 693829 | 1175983 | | W1000, N800 | 693829 | 1176183
1176383 | | W1000, N1000 | 693829 | 1176583 | | W1000, N1200 | 693829 | 1176783 | | W1000, N1400 | | | | W1000, N1600 | 693829 | 1176983 | | W1000, N1800 | 693829 | 1177183 | | W1000, N1000
W1000, N2000 | 693829 | 1177383 | | | 693829 | 1177583 | | W1000, N2200
W1000, N2400 | 693829 | 1177783 | | | 693829
693829 | 1177983 | | W1000, N2600 | ARCTNOON CONTINUES MINISTER - | 1178183 | | W1000, S200 | 693829 | 1175383 | | W1000, S400 | 693829 | 1175183 | | W1000, S600 | 693829 | 1174983 | | W1000, S800 | 693829 | 1174783 | | W1000, S1000 | 693829 | 1174583 | | W1000, S1200 | 693829 | 1174383 | | W1000, S1400 | 693829 | 1174183 | | W1000, S1600 | 693829 | 1173983 | | W1000, S1800 | 693829 | 1173783 | | W1000, S2000 | 693829 | 1173583 | | W1000, S2200 | 693829 | 1173383 | | W1000, S2400 | 693829 | 1173183 | Table 4-1 Page 8 of 10 | XRF Grid Node | Easting | Northing | |---------------|------------------|--------------------| | W1200, 0 | 693629 | 1175583 | | W1200, N200 | 693629 | 1175783 | | W1200, N400 | 693629 | 1175983 | | W1200, N600 | 693629 | 1176183 | | W1200, N800 | 693629 | 1176383 | | W1200, N1000 | 693629 | 1176583 | | W1200, N1200 | 693629 | 1176783 | | W1200, N1400 | 693629 | 1176983 | | W1200, N1600 | 693629 | 1177183 | | W1200, N1800 | 693629 | 1177383 | | W1200, N2000 | 693629 | 1177583 | | W1200, N2200 | 693629 | 1177783 | | W1200, N2400 | 693629 | 1177983 | | W1200, N2600 | 693629 | 1178183 | | W1200, S200 | 693629 | 1175383 | | W1200, S400 | 693629 | 1175183 | | W1200, S600 | 693629 | 1174983 | | W1200, S800 | 693629 | 1174783 | | W1200, S1000 | 693629 | 1174583 | | W1200, S1200 | 693629 | 1174383 | | W1200, S1400 | 693629 | 1174183 | | W1200, S1600 | 693629 | 1173983 | | W1200, S1800 | 693629 | 1173783 | | W1200, S2000 | 693629 | 1173583 | | W1200, S2200 | 693629 | 1173383 | | W1200, S2400 | 693629 | 1173183 | | W1400, 0 | 693429 | 1175583 | | W1400, 0 | 693429 | 1175783 | | W1400, N400 | 693429 | 1175983 | | W1400, N600 | 693429 | 1176183 | | W1400, N800 | 693429 | 1176383 | | W1400, N1000 | 693429 | 1176583 | | W1400, N1200 | 693429 | 1176783 | | W1400, N1400 | 693429 | 1176983 | | W1400, N1600 | 693429 | 1177183 | | W1400, N1800 | 693429 | 1177383 | | W1400, N2000 | 693429 | 1177583 | | W1400, N2200 | 693429 | 1177783 | | W1400, N2400 | 693429 | 1177983 | | W1400, N2600 | 693429 | 1178183 | | | | 1175383 | | W1400, S200 | 693429
693429 | 1175183 | | W1400, S400 | 693429 | 1174983 | | W1400, S600 | | | | W1400, S800 | 693429 | 1174783
1174583 | | W1400, S1000 | 693429 | | | W1400, S1200 | 693429 | 1174383 | | W1400, S1400 | 693429 | 1174183 | | W1400, S1600 | 693429 | 1173983 | | W1400, S1800 | 693429 | 1173783 | | W1400, S2000 | 693429 | 1173583 | | W1400, S2200 | 693429 | 1173383 | | W1400, S2400 | 693429 | 1173183 | Table 4-1 Page 9 of 10 | XRF Grid Node | Easting | Northing | |---------------|------------------|--------------------| | W1600, 0 | 693229 | 1175583 | | W1600, N200 | 693229 | 1175783 | | W1600, N400 | 693229 | 1175983 | | W1600, N600 | 693229 | 1176183 | | W1600, N800 | 693229 | 1176383 | | W1600, N1000 | 693229 | 1176583 | | W1600, N1200 | 693229 | 1176783 | | W1600, N1400 | 693229 | 1176983 | | W1600, N1600 | 693229 | 1177183 | | W1600, N1800 | 693229 | 1177383 | | W1600, N2000 | 693229 | 1177583 | | W1600, N2200 | 693229 | 1177783 | | W1600, N2400 | 693229 | 1177983 | | W1600, N2600 | 693229 | 1178183 | | W1600, S200 | 693229 | 1175383 | | W1600, S400 | 693229 | 1175183 | | W1600, S600 | 693229 | 1174983 | | W1600, S800 | 693229 | 1174783 | | W1600, S1000 | 693229 | 1174583 | | W1600, S1200 | 693229 | 1174383 | | W1600, S1400 | 693229 | 1174183 | | W1600, S1600 | 693229 | 1173983 | | W1600, S1800 | 693229 | 1173783 | | W1600, S1000 | 693229 | 1173583 | | W1600, S2000 | 693229 | 1173383 | | W1600, S2400 | 693229 | 1173183 | | W1800, 0 | 693029 | 1175583 | | W1800, 0 | 693029 | 1175783 | | W1800, N400 | 693029 | 1175783 | | W1800, N600 | 693029 | 1176183 | | W1800, N800 | | 1176383 | | W1800, N1000 | 693029
693029 | 1176583 | | W1800, N1200 | 693029 | 1176783 | | W1800, N1400 | 693029 | 1176983 | | W1800, N1600 | 693029 | 1177183 | | W1800, N1800 | | | | | 693029
693029 | 1177383 | | W1800, N2000 | 693029 | 1177583
1177783 | | W1800, N2200 | | f | | W1800, N2400 | 693029 | 1177983 | | W1800, N2600 | 693029 | 1178183 | | W1800, S200 | 693029 | 1175383 | | W1800, S400 | 693029 | 1175183 | | W1800, S600 | 693029 | 1174983 | | W1800, S800 | 693029 | 1174783 | | W1800, S1000 | 693029 | 1174583 | | W1800, S1200 | 693029 | 1174383 | | W1800, S1400 | 693029 | 1174183 | | W1800, S1600 | 693029 | 1173983 | | W1800, S1800 | 693029 | 1173783 | | W1800, S2000 | 693029 | 1173583 | | W1800, S2200 | 693029 | 1173383 | | W1800, S2400 | 693029 | 1173183 | Table 4-1 Page 10 of 10 Range Fan XRF Sample Locations | Sample Location | Easting | Northing | |-----------------|---------|----------| | CCX01 | 691861 | 1172451 | | CCX02 | 692065 | 1173813 | | CCX03 | 691519 | 1175630 | | CCX04 | 692028 | 1176030 | | CCX05 | 692436 | 1178080 | | CCX06 | 693244 | 1178309 | | CCX07 | 691769 | 1179292 | | CCX08 | 690732 | 1179292 | | CCX09 | 690519 | 1177530 | | CCX10 | 691478 | 1176809 | | CCX11 | 690003 | 1176022 | | CCX12 | 690115 | 1174359 | | CCX13 | 690799 | 1174455 | | CCX14 | 690207 | 1172951 | | CCX15 | 690378 | 1171801 | | CCX16 | 689274 | 1170126 | | CCX17 | 687936 | 1169880 | | CCX18 | 688236 | 1170901 | | CCX19 | 689099 | 1171859 | | CCX20 | 688369 | 1173209 | | CCX21 | 688194 | 1174526 | | CCX22 | 689194 | 1174817 | | CCX23 | 689078 | 1177526 | | CCX24 | 688282 | 1177963 | | CCX25 | 688740 | 1179534 | | CCX26 | 689982 | 1179847 | | CCX27 | 688144 | 1181176 | | CCX28 | 687986 | 1179888 | | CCX29 | 687511 | 1178459 | | CCX30 | 687115 | 1177084 | | CCX31 | 686886 | 1175997 | | CCX32 | 687061 | 1174184 | | CCX33 | 687186 | 1171851 | | CCX34 | 686590 | 1169347 | | CCX35 | 684803 | 1169247 | | CCX36 | 684157 | 1171009 | | CCX37 | 685449 | 1171422 | | CCX38 | 685403 | 1173788 | | CCX39 | 685319 | 1175905 | | CCX40 | 685844 | 1177584 | | CCX41 | 686286 | 1179634 | | CCX42 | 684415 | 1178301 | | CCX43 | 684019 | 1175872 | | CCX44 | 683140 | 1174847 | | CCX45 | 683915 | 1172859 | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 1 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|-----------------|--| | HR-94Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-94Q-MW02 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-95Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Well was dry at the time of last sampling, however, after increased fall and winter rainfall, the well may have available groundwater for sampling. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-95Q-MW02 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-95Q-MW03 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-96Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to
provide sample data to support RI. | | HR-131Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-144Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-145Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-145Q-MW02 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-146Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-146Q-MW02 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-147Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Well was dry at the time of last sampling, however, after increased fall and winter rainfall, the well may have available groundwater for sampling. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-147Q-MW02 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | | HR-148Q-MW01 | One groundwater | Resample permanent residuum monitoring well. Groundwater sample will be collected from existing monitoring well to provide sample data to assist in characterizing the groundwater for potential contamination and to provide sample data to support RI. | ## Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 2 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|---|---| | HR-CCRI-MW01 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 125 feet southeast and downslope of sample location HR-146Q-GP04. Soil sample data will aid in determining extent of contaminant results previously found in samples for location HR-146Q-GP04. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-MW02 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 125 feet east northeast and downslope of sample location HR-146Q-GP02. Soil sample data will aid in determining extent of contaminant results previously found in samples for location HR-146Q-GP02. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-MW03 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 65 feet southeast and downslope of sample location HR-94Q-GP06. Soil sample data will aid in determining extent of contaminant results previously found in samples for location HR-94Q-GP06. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-MW04 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 150 feet southeast and downslope of sample location HR-95Q-GP04. Sample data will aid in determining extent of contaminant results previously found in this area of the parcel. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-MW05 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 100 feet south and downslope of sample location HR-148Q-GP01. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-148Q-GP01. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-MW06 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 200 feet southeast and downslope of sample location HR-148Q-GP03. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-148Q-GP03. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun
County, Alabama (Page 3 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|---|---| | HR-CCRI-MW07 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 50 feet south of sample location HR-97Q-GP05. Sample data will aid in determining extent of contaminant results previously found in this area of the parcel. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-MW08 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 150 feet southeast of sample location HR-144Q-DEP02. Sample data will aid in determining extent of contaminant results previously found in this area of the parcel. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-MW09 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 115 feet southeast and downslope of sample location HR-144Q-GP02. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-144Q-GP02. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-MW10 | One surface soil,
two subsurface soils,
and one groundwater | Soil boring location for one surface soil, two subsurface soil samples and a permanent residuum monitoring well to be located approximately 60 feet northeast of sample location HR-94Q-GP02. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-94Q-GP02. Surface soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. The monitoring well will be installed to an approximate depth of 50 feet below ground surface (bgs). Groundwater sample data will be used to establish a local groundwater flow direction and provide information on groundwater quality in the residuum aquifer. | | HR-CCRI-GP01 | One surface soil and two subsurface soils | Soil boring for one surface soil and two subsurface soil samples to be located approximately 115 feet west and upslope of sample location HR-146Q-GP04. Sample data will aid in determining extent of contaminant results previously found in this area of the parcel. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Soil sample data will also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP02 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 130 feet northeast and downslope of sample location HR-146Q-GP04. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-146Q-GP04. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP03 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 75 feet southwest and upslope of sample location HR-146Q-GP02. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-146Q-GP02. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | ## Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 4 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|---|---| | HR-CCRI-GP04 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 100 feet northwest and upslope of sample location HR-146Q-GP02. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-146Q-GP02. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP05 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located near the southern border of Parcel 94Q approximately 225 feet west and upslope of sample location HR-94Q-GP06. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-94Q-GP06. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP06 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 100 feet northeast and downslope of sample location HR-94Q-GP06. Sample data will aid in determining extent downslope of contaminant results previously found in samples for location HR-94Q-GP06. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP07 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 110 feet southeast and downslope of sample location HR-94Q-GP08. Sample data will aid in determining extent downslope
of contaminant results previously found in samples for location HR-94Q-GP08. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP08 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located in the central western portion of Parcel 94Q approximately 250 feet northeast and upslope of sample location HR-94Q-GP06. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-94Q-GP06. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP09 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located in the western portion of Parcel 94Q approximately 100 feet northwest and upslope of sample location HR-94Q-GP02. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-94Q-GP02. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP10 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 85 feet northeast of sample location HR-94Q-GP02. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-94Q-GP02. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP11 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 140 feet south of sample location HR-95Q-MW01. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-95Q-MW01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP12 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 165 feet east of sample location HR-95Q-GP04. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-95Q-GP04. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 5 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|---|--| | HR-CCRI-GP13 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 225 feet northeast and downslope of sample location HR-95Q-MW01. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-95Q-MW01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP14 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 180 feet southeast and downslope of sample location HR-95Q-MW02. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-95Q-MW02. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP15 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 150 feet east and downslope of sample location HR-95Q-MW01. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-95Q-MW01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP16 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 160 feet southeast and downslope of sample location HR-95Q-DEP02. Sample data will aid in determining extent of limited contaminant results previously found in samples for locations HR-95Q-DEP02, HR-95Q-GP09, HR-131Q-GP01, and HR-131Q-GP02. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP17 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 150 feet northwest and upslope of sample location HR-96Q-GP01. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-96Q-GP01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP18 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 125 feet southwest and upslope of sample location HR-148Q-GP01. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-148Q-GP01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP19 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 175 feet north of sample location HR-148Q-GP01. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-148Q-GP01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP20 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 250 feet northeast of sample location HR-148Q-GP01. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-148Q-GP01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP21 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 150 feet southeast of sample location HR-148Q-GP01. Sample data will aid in determining extent
of contaminant results previously found in samples for location HR-148Q-GP01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | ## Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 6 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|---|---| | HR-CCRI-GP22 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 165 feet southwest of sample location HR-148Q-GP03. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-148Q-GP03. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP23 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 100 feet north of sample location HR-148Q-MW01. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-148Q-MW01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP24 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located just outside the eastern central boundary of Parcel 96Q in the eastern portion of Parcel 145Q-X. Sample data will aid in determining extent of potential contaminant in the eastern portion of Parcel 145Q-X. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP25 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 200 feet west of sample location HR-148Q-MW01. Sample data will aid in determining extent of contaminant results previously found in samples for locations HR-148Q-MW01 and HR-148Q-GP03. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP26 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 65 feet southwest of sample location HR-97Q-GP02. Sample data will aid in determining extent of contaminant results previously found in samples for location HR-97Q-GP02. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP27 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located approximately 65 feet northeast and downslope of sample location HR-97Q-GP06. Sample data will aid in determining extent downslope of contaminant results previously found in samples for location HR-97Q-GP06. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP28 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located in the central-western area of Parcel 144Q-X, west and upslope of sample locations HR-144Q-DEP01. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-144Q-DEP01. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP29 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located 100 feet west and upslope of sample locations HR-144Q-GP02. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-144Q-GP02 and HR-144Q-DEP02. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP30 | One surface soil and two subsurface soils | Soil boring location for one surface soil and two subsurface soil samples to be located 85 feet west and upslope of sample locations HR-144Q-GP06. Sample data will aid in determining extent upslope of contaminant results previously found in samples for location HR-144Q-GP06. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 7 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|---|--| | HR-CCRI-GP31 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP32 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP33 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP34 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil
samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP35 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP36 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP37 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP38 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP39 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 8 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|---|--| | HR-CCRI-GP40 | One surface soil and two subsurface soils | Soil boring location to be determined from XRF surface soil screening results for one surface soil and two subsurface soil samples. Two discrete subsurface soil samples will be collected from 1 to 12 feet bgs based on XRF screening showing the highest lead concentrations. Sample data will be used to determine vertical and horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP41 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP42 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP43 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP44 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP45 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP46 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP47 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP48 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP49 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP50 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP51 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 9 of 15) | Sample Location | Sample Media | Sample
Location Rationale | |-----------------|--------------------|--| | HR-CCRI-GP52 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP53 | One surface soil 、 | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP54 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP55 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP56 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP57 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP58 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP59 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP60 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP61 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP62 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP63 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 10 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|------------------|--| | HR-CCRI-GP64 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP65 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP66 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP67 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP68 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP69 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP70 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP71 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP72 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal
extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP73 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP74 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP75 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 11 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|------------------|--| | HR-CCRI-GP76 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP77 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP78 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP79 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP80 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP81 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP82 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP83 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP84 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP85 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP86 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP87 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 12 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|----------------------------|---| | HR-CCRI-GP88 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP89 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-GP90 | One surface soil | One surface soil sample location to be determined from XRF surface soil screening results to be collected from 0 to 1 foot bgs. Sample data will be used to determine horizontal extent of potential contamination at the parcel to support the RI. Surface soil sample data also be used to assess potential impacts to terrestrial biota that might utilize the site for food and/or habitat purposes. | | HR-CCRI-SW/SD01 | Surface water and sediment | The sample location is west and upslope of Parcel 146Q-X, in the intermittent stream that flows southeast across the central area of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff upstream of this area from former training activities outside the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors
that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD02 | Surface water and sediment | The sample location is inside the western boundary of Parcel 146Q-X, in the intermittent stream that flows southeast across the central area of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff in this area from former training activities in the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD03 | Surface water and sediment | The sample location is in the south-central area of Parcel 146Q-X, in the intermittent stream that flows southeast across the central area of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff in this area from former training activities in the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD04 | Surface water and sediment | The sample location is in the central area of Parcel 146Q-X, in the intermittent stream that flows east across the central area of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff in this area from former training activities in the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD05 | Surface water and sediment | The sample location is in the central area of Parcel 146Q-X, in the intermittent stream that flows southeast across the north-central area of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff in this area from former training activities in the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD06 | Surface water and sediment | The sample location is in the north-central area of Parcel 146Q-X, in the intermittent stream that flows southeast across the north-central area of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff in this area from former training activities in the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD07 | Surface water and sediment | The sample location is located in the east-central area of Parcel 146Q-X and downstream of the confluence of two intermittent streams that flow southeast across the central area of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff in this area from former training activities in the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 13 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|-------------------------------|---| | HR-CCRI-SW/SD08 | Surface water and sediment | The sample location is located in the east-central area of Parcel 146Q-X in an intermittent stream that flows east across the east-central area of the parcel. Sample data will indicate if contaminant releases have occurred from runoff in this area from former training activities in the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD09 | Surface water and sediment | The sample location is located just outside the eastern boundary Parcel 146Q-X in an intermittent stream that flows east out of the parcel. Sample data will indicate if contaminant releases have occurred from runoff in this area from former training activities in the parcel. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD10 | Surface water and sediment | The sample location is west of the northwestern boundary of Parcel 146Q-X and southwest of the western corner of Parcel 94Q, in the intermittent stream that flows southeast across the north-central area of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff upslope of Parcels 94Q and 146Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD11 | Surface water and sediment | The sample location is located in the center area of a drainage ditch that flows southeast across the southern area of Parcel 95Q. Sample data will indicate if contaminant releases have occurred from of Parcels 95Q from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD12 | Surface water and sediment | The sample location is northwest of the northwestern boundary of Parcel 145Q-X in the intermittent stream that flows southeast across the southwestern area of Parcels 96Q and 145Q-X. Sample data will indicate if contaminant releases have occurred from runoff upslope of Parcels 96Q and 145Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD13 | Surface water and
sediment | The sample location is just outside the northwestern boundary of Parcel 145Q-X in the intermittent stream that flows southeast across the southwestern area of Parcels 96Q and 145Q-X. Sample data will indicate if contaminant releases have occurred from runoff upslope of Parcels 96Q and 145Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD14 | Surface water and sediment | The sample location is in the western area of Parcel 145Q-X, just inside the boundary of Parcel 96Q in the intermittent stream that flows southeast across the southwestern area of Parcels 96Q and 145Q-X. Sample data will indicate if contaminant releases have occurred from runoff in this area of Parcel 145Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD15 | Surface water and sediment | The sample location is located at the northern boundary of Parcel 95Q in the center area of the parcel in an intermittent stream that flows southeast across the northern edge of Parcel 95Q. Sample data will indicate if contaminant releases have occurred from of Parcels 95Q from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD16 | Surface water and sediment | The sample location is located just outside the eastern boundary of Parcel 131Q-X in an intermittent stream that flows southeast across the northern edge of Parcel 95Q through the northern area of Parcel 131Q-X. Sample data will indicate if contaminant releases have occurred from of Parcels 95Q from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD17 | Surface water and sediment | The sample location is west of the western boundary of Parcel 144Q-X in the intermittent stream that flows east across the central area of Parcel 144Q-X. Sample data will indicate if contaminant releases have occurred from runoff upslope of Parcels 97Q and 144Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 14 of 15) | Sample Location | Sample Media |
Sample Location Rationale | |-----------------|-------------------------------|--| | HR-CCRI-SW/SD18 | Surface water and sediment | The sample location is just outside the western boundary of Parcel 144Q-X in the intermittent stream that flows east across the central area of Parcel 144Q-X. Sample data will indicate if contaminant releases have occurred from runoff upslope of Parcels 97Q and 144Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD19 | Surface water and sediment | The sample location is in the western portion of Parcel 144Q-X in the intermittent stream that flows east across the central area of Parcel 144Q-X. Sample data will indicate if contaminant releases have occurred from runoff in Parcel 144Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD20 | Surface water and sediment | The sample location is outside the eastern corner of Parcel 97Q in the intermittent stream that flows southeast across the central area of Parcel 144Q-X and the northeastern corner of Parcel 97Q. Sample data will indicate if contaminant releases have occurred from runoff in Parcels 97Q and 144Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD21 | Surface water and sediment | The sample location is south of Parcels 144Q and 147Q-X in the intermittent stream that flows southeast across the east-central area of Parcel 144Q-X and the northeastern corner of Parcel 97Q. Sample data will indicate if contaminant releases have occurred from runoff in Parcels 97Q and 144Q-X from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD22 | Surface water and sediment | The sample location is south of Parcels 144Q and 147Q-X in the intermittent stream that flows east in the area south of Parcel 97Q. Sample data will indicate if contaminant releases have occurred from runoff from Parcel 97Q from former training activities in the area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD23 | Surface water and sediment | The sample location is south of Parcels 144Q and 147Q-X in the intermittent stream that flows east in the area south of Parcels 97Q, 144Q-X, and 147Q-X. Sample data will indicate if contaminant releases have occurred from runoff from former training activities at Parcels 97Q, 144Q-X, and 147Q-X. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD24 | Surface water and sediment | The sample location is north of the western portion of Parcel 144Q-X in the intermittent stream that flows southeast just north Parcel 144Q-X. Sample data will indicate if contaminant releases have occurred from runoff upslope of Parcels 97Q, 144Q-X, and 147Q-X. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD25 | Surface water and sediment | The sample location is in the northern portion of Parcel 147Q-X in the intermittent stream that flows east across the northern area of Parcel 147Q-X. Sample data will indicate if contaminant releases have occurred from runoff in the northern area of Parcel 147Q-X. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD26 | Surface water and
sediment | The sample location is the intermittent stream that flows east just south of Parcel 146Q-X. The sample location is just west of a dirt road in the southeastern area of the parcel. Sample data will indicate if contaminant releases have occurred from runoff downslope of the southern portion of Parcel 146Q-X. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD27 | Surface water and
sediment | The sample location is the intermittent stream that flows east south of Parcel 146Q-X. The sample location is just south of the southeastern corner of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff downslope of the southern portion of Parcel 146Q-X. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | # Proposed Sampling Locations and Rationale, Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Calhoun County, Alabama (Page 15 of 15) | Sample Location | Sample Media | Sample Location Rationale | |-----------------|----------------------------|---| | HR-CCRI-SW/SD28 | Surface water and sediment | The sample location is just northeast of Parcel 147Q-X in the intermittent stream that flows east across the northern area of Parcel 147Q-X. The sample location is just upstream of the confluence with another intermittent stream flowing from the northwest. Sample data will indicate if contaminant releases have occurred from runoff in the northern area of Parcels 144Q-X and 147Q-X. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD29 | Surface water and sediment | The sample location is just outside the southwest corner of Parcel 146Q-X in the intermittent stream that flows southeast. Sample data will indicate if contaminant releases have occurred from runoff from upslope of former training activities in this area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | | HR-CCRI-SW/SD30 | Surface water and sediment | The sample location is in the intermittent stream that flows southeast, outside the southern boundary of Parcel 146Q-X. Sample data will indicate if contaminant releases have occurred from runoff from upslope of former training activities in this area. Sample data will also be used to assess potential impacts to aquatic biota in the waterway and other ecological receptors that may utilize the waterway for food and/or habitat purposes. | #### XRF QA/QC Soil Sample Designations and QA/QC Sample Quantities, Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Alabama (Page 1 of 2) | | | | QA/QC | Samples | | |--------------------|--------------------------------|------------------------|---------------------
--|-------------------------| | Sample
Location | Sample Designation | Sample
Depth (feet) | Field
Duplicates | MS/MSD | Analytical Suite | | HR-CCRI-#### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | Management of the Control Con | XRF Metals ^a | | HR-CCRI-#### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-#### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-#### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-#### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-#### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-#### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-#### | HR-CCRI-###-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | | HR-CCRI-#### | HR-CCRI-####-SS-SJ\$\$\$\$-REG | 0-1 | | | XRF Metals ^a | #### XRF QA/QC Soil Sample Designations and QA/QC Sample Quantities, Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, Alabama (Page 2 of 2) ^a XRF Metals - Arsenic, antimony, copper, lead, and zinc. #### - Unigue location identifier \$\$\$\$ - Unigue sample number FD - Field duplicate. MS/MSD - Matrix spike/matrix spike duplicate. QA/QC - Quality assurance/quality control. REG - Field sample. Table 4-4 #### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 1 of 10) | Sample
Location | Sample Designation | Sample
Depth
(feet) | Field
Duplicates | C Samples MS/MSD | Analytical Suite | |--------------------|----------------------------|---------------------------|---------------------------|-------------------------------|-------------------------------------| | | | | | | | | HR-CCRI-MW01 | HR-CCRI-MW01-SS-SJ0001-REG | 0-1 | | HR-CCRI-MW01-SS-SJ0001-MS/MSD | Full Suite of Analyses ^c | | | HR-CCRI-MW01-DS-SJ0002-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-MW01-DS-SJ0003-REG | 1-12 ^b | | | Metals and Explosives | | HR-CCRI-MW02 | HR-CCRI-MW02-SS-SJ0004-REG | 0-1 | HR-CCRI-MW02-SS-SJ0005-FD | | Full Suite of Analyses ^c | | | HR-CCRI-MW02-DS-SJ0006-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-MW02-DS-SJ0007-REG | 1-12 ^b | | | Metals and Explosives | | HR-CCRI-MW03 | HR-CCRI-MW03-SS-SJ0008-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-MW03-DS-SJ0009-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-MW03-DS-SJ0010-REG | 1-12 ^b | HR-CCRI-MW03-DS-SJ0011-FD | | Metals and Explosives | | HR-CCRI-MW04 | HR-CCRI-MW04-SS-SJ0012-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-MW04-DS-SJ0013-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-MW04-DS-SJ0014-REG | 1-12 ^b | | | Metals and Explosives | | HR-CCRI-MW05 | HR-CCRI-MW05-SS-SJ0015-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-MW05-DS-SJ0016-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-MW05-DS-SJ0017-REG | 1-12 ^b | | | Metals and Explosives | | HR-CCRI-MW06 | HR-CCRI-MW06-SS-SJ0018-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-MW06-DS-SJ0019-REG | 1-12 ^a | | | Full Suite of Analyses ⁰ | | | HR-CCRI-MW06-DS-SJ0020-REG | 1-12 ^b | | | Metals and Explosives | | HR-CCRI-MW07 | HR-CCRI-MW07-SS-SJ0021-REG | 0-1 | HR-CCRI-MW07-SS-SJ0022-FD | | Full Suite of Analyses ^c | | | HR-CCRI-MW07-DS-SJ0023-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-MW07-DS-SJ0024-REG | 1-12 ^b | | | Metals and Explosives | | HR-CCRI-MW08 | HR-CCRI-MW08-SS-SJ0025-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-MW08-DS-SJ0026-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-MW08-DS-SJ0027-REG | 1-12 ^b | | | Metals and Explosives | | HR-CCRI-MW09 | HR-CCRI-MW09-SS-SJ0028-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-MW09-DS-SJ0029-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-MW09-DS-SJ0030-REG | 1-12 ^b | HR-CCRI-MW09-DS-SJ0031-FD | | Metals and Explosives | ### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 2 of 10) | | | Sample | QA/Q | C Samples | | |--------------|----------------------------|-------------------|---------------------------|-------------------------------|-------------------------------------| | Sample | Sample Designation | Depth
(feet) | Field
Duplicates | MS/MSD | Analytical Suite | | Location | Sample Designation | (reet) | Duplicates | I WIS/WISD | Analytical Suite | | HR-CCRI-MW10 | HR-CCRI-MW10-SS-SJ0032-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-MW10-DS-SJ0033-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-MW10-DS-SJ0034-REG | 1-12 ^b | | | Metals and Explosives | | HR-CCRI-GP01 | HR-CCRI-GP01-SS-SJ0035-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP01-DS-SJ0036-REG | 1-12 ^a | HR-CCRI-GP01-DS-SJ0037-FD | | Full Suite of Analyses ^c | | | HR-CCRI-GP01-DS-SJ0038-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP02 | HR-CCRI-GP02-SS-SJ0039-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP02-DS-SJ0040-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP02-DS-SJ0041-REG | 1-12 ^b | | HR-CCRI-GP02-DS-SJ0041-MS/MSD | Lead, Only | | HR-CCRI-GP03 | HR-CCRI-GP03-SS-SJ0042-REG | 0-1 | HR-CCRI-GP03-SS-SJ0043-FD | | Full Suite of Analyses ^c | | | HR-CCRI-GP03-DS-SJ0044-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP03-DS-SJ0045-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP04 | HR-CCRI-GP04-SS-SJ0046-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP04-DS-SJ0047-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP04-DS-SJ0048-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP05 | HR-CCRI-GP05-SS-SJ0049-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP05-DS-SJ0050-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-GP05-DS-SJ0051-REG | 1-12 ^b | | |
Lead, Only | | HR-CCRI-GP06 | HR-CCRI-GP06-SS-SJ0052-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP06-DS-SJ0053-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-GP06-DS-SJ0054-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP07 | HR-CCRI-GP07-SS-SJ0055-REG | 0-1 | | | Full Suite of Analyses ^C | | | HR-CCRI-GP07-DS-SJ0056-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP07-DS-SJ0057-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP08 | HR-CCRI-GP08-SS-SJ0058-REG | 0-1 | | | Metals and Explosives | | | HR-CCRI-GP08-DS-SJ0059-REG | 1-12ª | | | Metals and Explosives | | | HR-CCRI-GP08-DS-SJ0060-REG | 1-12 ^b | HR-CCRI-GP19-DS-SJ0061-FD | | Lead, Only | ### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 3 of 10) | | | Sample | QA/Q | C Samples | | |--------------------|----------------------------|-------------------|---------------------------|--|--| | Sample
Location | Sample Designation | Depth
(feet) | Field
Duplicates | MS/MSD | Analytical Suite | | | | | | | • | | HR-CCRI-GP09 | HR-CCRI-GP09-SS-SJ0062-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP09-DS-SJ0063-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-GP09-DS-SJ0064-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP10 | HR-CCRI-GP10-SS-SJ0065-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP10-DS-SJ0066-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP10-DS-SJ0067-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP11 | HR-CCRI-GP11-SS-SJ0068-REG | 0-1 | HR-CCRI-GP11-SS-SJ0069-FD | | Metals and Explosives | | | HR-CCRI-GP11-DS-SJ0070-REG | 1-12ª | | | Metals and Explosives | | | HR-CCRI-GP11-DS-SJ0071-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP12 | HR-CCRI-GP12-SS-SJ0072-REG | 0-1 | | <u> </u> | Metals and Explosives | | 111 CO111 G1 12 | HR-CCRI-GP12-DS-SJ0073-REG | 1-12 ^a | | HR-CCRI-GP12-DS-SJ0073-MS/MSD | Metals and Explosives Metals and Explosives | | | HR-CCRI-GP12-DS-SJ0074-REG | 1-12 ^b | **** | THE COLL OF THE PERSON OF THE PROPERTY OF THE PERSON TH | Lead, Only | | | | | | | | | HR-CCRI-GP13 | HR-CCRI-GP13-SS-SJ0075-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP13-DS-SJ0076-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP13-DS-SJ0077-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP14 | HR-CCRI-GP14-SS-SJ0078-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP14-DS-SJ0079-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP14-DS-SJ0080-REG | 1-12 ^b | | HR-CCRI-GP14-DS-SJ0080-MS/MSD | Lead, Only | | HR-CCRI-GP15 | HR-CCRI-GP15-SS-SJ0081-REG | 0-1 | HR-CCRI-GP15-SS-SJ0082-FD | | Full Suite of Analyses ^c | | | HR-CCRI-GP15-DS-SJ0083-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP15-DS-SJ0084-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP16 | HR-CCRI-GP16-SS-SJ0085-REG | 0-1 | HR-CCRI-GP16-SS-SJ0086-FD | | Metals and Explosives | | | HR-CCRI-GP16-DS-SJ0087-REG | 1-12ª | | | Metals and Explosives | | | HR-CCRI-GP16-DS-SJ0088-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP17 | HR-CCRI-GP17-SS-SJ0089-REG | 0-1 | | HR-CCRI-GP17-SS-SJ0089-MS/MSD | Full Suite of Analyses ^c | | | HR-CCRI-GP17-DS-SJ0090-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-GP17-DS-SJ0091-REG | 1-12 ^b | | | Lead, Only | #### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 4 of 10) | | | Sample | QA/Q0 | C Samples | | |---|----------------------------|-------------------|---------------------------|----------------------------|-------------------------------------| | Sample | | Depth | Field | | | | Location | Sample Designation | (feet) | Duplicates | MS/MSD | Analytical Suite | | | | | | | | | HR-CCRI-GP18 | HR-CCRI-GP18-SS-SJ0092-REG | 0-1 | HR-CCRI-GP18-SS-SJ0093-FD | | Metals and Explosives | | | HR-CCRI-GP18-DS-SJ0094-REG | 1-12ª | | | Metals and Explosives | | | HR-CCRI-GP18-DS-SJ0095-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP19 | HR-CCRI-GP19-SS-SJ0096-REG | 0-1 | | | Metals and Explosives | | | HR-CCRI-GP19-DS-SJ0097-REG | 1-12 ^a | | | Metals and Explosives | | | HR-CCRI-GP19-DS-SJ0098-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP20 | HR-CCRI-GP20-SS-SJ0099-REG | 0-1 | | | Full Suite of Analyses ^c | | · · · · · · · · · · · · · · · · · | HR-CCRI-GP20-DS-SJ0100-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-GP20-DS-SJ0101-REG | 1-12 ^b | | | Lead, Only | | | | | | | | | HR-CCRI-GP21 | HR-CCRI-GP21-SS-SJ0102-REG | 0-1 | HR-CCRI-GP21-SS-SJ0103-FD | | Metals and Explosives | | | HR-CCRI-GP21-DS-SJ0104-REG | 1-12ª | | | Metals and Explosives | | | HR-CCRI-GP21-DS-SJ0105-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP22 | HR-CCRI-GP22-SS-SJ0106-REG | 0-1 | | | Metals and Explosives | | | HR-CCRI-GP22-DS-SJ0107-REG | 1-12ª | | | Metals and Explosives | | | HR-CCRI-GP22-DS-SJ0108-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP23 | HR-CCRI-GP23-SS-SJ0109-REG | 0-1 | | | Metals and Explosives | | | HR-CCRI-GP23-DS-SJ0110-REG | 1-12ª | | | Metals and Explosives | | | HR-CCRI-GP23-DS-SJ0111-REG | 1-12 ^b | | HR-CCRI-GP23-DS-SJ0111-MSD | Lead, Only | | HR-CCRI-GP24 | HR-CCRI-GP24-SS-SJ0112-REG | 0-1 | | | Metals and Explosives | | | HR-CCRI-GP24-DS-SJ0113-REG | 1-12 ^a | HR-CCRI-GP24-DS-SJ0114-FD | | Metals and Explosives | | | HR-CCRI-GP24-DS-SJ0115-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP25 | HR-CCRI-GP25-SS-SJ0116-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP25-DS-SJ0117-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | *************************************** | HR-CCRI-GP25-DS-SJ0118-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP26 | HR-CCRI-GP26-SS-SJ0119-REG | 0-1 | | | Full Suite of Analyses ^C | | | HR-CCRI-GP26-DS-SJ0120-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP26-DS-SJ0121-REG | 1-12 ^b | | | Lead, Only | Table 4-4 #### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 5 of 10) | | | Sample | QA/Q | C Samples | | |------------------|------------------------------------|-------------------|---|-------------------------------|--------------------------------------| | Sample | | Depth | Field | | | | Location | Sample Designation | (feet) | Duplicates | MS/MSD | Analytical Suite | | | | | | · | 2 | | HR-CCRI-GP27 | HR-CCRI-GP27-SS-SJ0122-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP27-DS-SJ0123-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP27-DS-SJ0124-REG | 1-12 ^b | HR-CCRI-GP27-DS-SJ0125-FD | | Lead, Only | | HR-CCRI-GP28 | HR-CCRI-GP28-SS-SJ0126-REG | 0-1 | | | Full Suite of Analyses ^c | | 7111 00111 01 20 | HR-CCRI-GP28-DS-SJ0127-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-GP28-DS-SJ0128-REG | 1-12 ^b | | | Lead, Only | | | 7.1.1. COLI. GI 20 20 000 120 1120 | 1 12 | | | Lead, Offing | | HR-CCRI-GP29 | HR-CCRI-GP29-SS-SJ0129-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP29-DS-SJ0130-REG | 1-12 ^a | | | Full Suite of Analyses ^c | | | HR-CCRI-GP29-DS-SJ0131-REG | 1-12 ^b | | | Lead, Only | | | . ID 00D1 0D00 00 0 10 100 DE0 | | | | ·· - · · · · · · · · · · · · · · · · | | HR-CCRI-GP30 | HR-CCRI-GP30-SS-SJ0132-REG | 0-1 | | | Full Suite of Analyses ^c | | | HR-CCRI-GP30-DS-SJ0133-REG | 1-12ª | | | Full Suite of Analyses ^c | | | HR-CCRI-GP30-DS-SJ0134-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP31 | HR-CCRI-GP31-SS-SJ0135-REG | 0-1 | HR-CCRI-GP31-SS-SJ0136-FD | | Lead, Only | | | HR-CCRI-GP31-DS-SJ0137-REG | 1-12ª | | | Lead, Only | | | HR-CCRI-GP31-DS-SJ0138-REG | 1-12 ^b | | | Lead, Only |
| HR-CCRI-GP32 | HR-CCRI-GP32-SS-SJ0139-REG | 0-1 | | HR-CCRI-GP32-SS-SJ0139-MS/MSD | Lead, Only | | | HR-CCRI-GP32-DS-SJ0140-REG | 1-12ª | | | Lead, Only | | | HR-CCRI-GP32-DS-SJ0141-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP33 | HR-CCRI-GP33-SS-SJ0142-REG | 0-1 | | | Lead, Only | | | HR-CCRI-GP33-DS-SJ0143-REG | 1-12 ^a | | | Lead, Only | | | HR-CCRI-GP33-DS-SJ0144-REG | 1-12 ^b | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Lead, Only | | <u> </u> | | | | | | | HR-CCRI-GP34 | HR-CCRI-GP34-SS-SJ0145-REG | 0-1 | | | Lead, Only | | | HR-CCRI-GP34-DS-SJ0146-REG | 1-12ª | | | Lead, Only | | | HR-CCRI-GP34-DS-SJ0147-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP35 | HR-CCRI-GP35-SS-SJ0148-REG | 0-1 | | | Lead, Only | | | HR-CCRI-GP35-DS-SJ0149-REG | 1-12 ^a | | | Lead, Only | | | HR-CCRI-GP35-DS-SJ0150-REG | 1-12 ^b | | | Lead, Only | #### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 6 of 10) | | | Sample | QA/Q | | | |--------------|----------------------------|-------------------|---------------------------|-------------------------------|-----------------------| | Sample | | Depth | Field | | | | Location | Sample Designation | (feet) | Duplicates | MS/MSD | Analytical Suite | | | | | | | | | HR-CCRI-GP36 | HR-CCRI-GP36-SS-SJ0151-REG | 0-1 | | | Lead, Only | | | HR-CCRI-GP36-DS-SJ0152-REG | 1-12 ^a | | | Lead, Only | | | HR-CCRI-GP36-DS-SJ0153-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP37 | HR-CCRI-GP37-SS-SJ0154-REG | 0-1 | | | Lead, Only | | | HR-CCRI-GP37-DS-SJ0155-REG | 1-12ª | | | Lead, Only | | | HR-CCRI-GP37-DS-SJ0156-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP38 | HR-CCRI-GP38-SS-SJ0157-REG | 0-1 | | | Lead, Only | | | HR-CCRI-GP38-DS-SJ0158-REG | 1-12 ^a | | | Lead, Only | | | HR-CCRI-GP38-DS-SJ0159-REG | 1-12 ^b | | | Lead, Only | | | | | | | | | HR-CCRI-GP39 | HR-CCRI-GP39-SS-SJ0160-REG | 0-1 | | | Lead, Only | | | HR-CCRI-GP39-DS-SJ0161-REG | 1-12ª | | | Lead, Only | | | HR-CCRI-GP39-DS-SJ0162-REG | 1-12 ^b | | | Lead, Only | | | | | | | | | HR-CCRI-GP40 | HR-CCRI-GP40-SS-SJ0163-REG | 0-1 | HR-CCRI-GP40-SS-SJ0164-FD | | Lead, Only | | | HR-CCRI-GP40-DS-SJ0165-REG | 1-12ª | | | Lead, Only | | | HR-CCRI-GP40-DS-SJ0166-REG | 1-12 ^b | | | Lead, Only | | HR-CCRI-GP41 | HR-CCRI-GP41-SS-SJ0167-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP42 | HR-CCRI-GP42-SS-SJ0168-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP43 | HR-CCRI-GP43-SS-SJ0169-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP44 | HR-CCRI-GP44-SS-SJ0170-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP45 | HR-CCRI-GP45-SS-SJ0171-REG | 0-1 | HR-CCRI-GP45-SS-SJ0172-FD | | Metals and Explosives | | HR-CCRI-GP46 | HR-CCRI-GP46-SS-SJ0173-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP47 | HR-CCRI-GP47-SS-SJ0174-REG | 0-1 | | HR-CCRI-GP47-SS-SJ0174-MS/MSD | Metals and Explosives | #### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 7 of 10) | | | Sample | QA/QC Samples | | | |--------------|----------------------------|--------|---------------|-------------------------------|-----------------------| | Sample | Occupie Destanceites | Depth | Field | MOMMOD | Amphatical Cuite | | Location | Sample Designation | (feet) | Duplicates | MS/MSD | Analytical Suite | | HR-CCRI-GP48 | HR-CCRI-GP48-SS-SJ0175-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP49 | HR-CCRI-GP49-SS-SJ0176-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP50 | HR-CCRI-GP50-SS-SJ0177-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP51 | HR-CCRI-GP51-SS-SJ0178-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP52 | HR-CCRI-GP52-SS-SJ0179-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP53 | HR-CCRI-GP53-SS-SJ0180-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP54 | HR-CCRI-GP54-SS-SJ0181-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP55 | HR-CCRI-GP55-SS-SJ0182-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP56 | HR-CCRI-GP56-SS-SJ0183-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP57 | HR-CCRI-GP57-SS-SJ0184-REG | 0-1 | | HR-CCRI-GP57-SS-SJ0184-MS/MSD | Metals and Explosives | | HR-CCRI-GP58 | HR-CCRI-GP58-SS-SJ0185-REG | 0-1 | | | Metals and Explosives | ### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 8 of 10) | | | Sample | QA/Q | | | |--------------|----------------------------|--------|---------------------------|--------|-----------------------| | Sample | | Depth | Field | | | | Location | Sample Designation | (feet) | Duplicates | MS/MSD | Analytical Suite | | HR-CCRI-GP59 | HR-CCRI-GP59-SS-SJ0186-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP60 | HR-CCRI-GP60-SS-SJ0187-REG | 0-1 | | | Metals and Explosives | | HR-CCRI-GP61 | HR-CCRI-GP61-SS-SJ0188-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP62 | HR-CCRI-GP62-SS-SJ0189-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP63 | HR-CCRI-GP63-SS-SJ0190-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP64 | HR-CCRI-GP64-SS-SJ0191-REG | 0-1 | HR-CCRI-GP64-SS-SJ0192-FD | | Lead, Only | | HR-CCRI-GP65 | HR-CCRI-GP65-SS-SJ0193-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP66 | HR-CCRI-GP66-SS-SJ0194-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP67 | HR-CCRI-GP67-SS-SJ0195-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP68 | HR-CCRI-GP68-SS-SJ0196-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP69 | HR-CCRI-GP69-SS-SJ0197-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP70 | HR-CCRI-GP70-SS-SJ0198-REG | 0-1 | | | Lead, Only | #### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 9 of 10) | | | Sample | QA/QC Samples | | | |--------------|----------------------------|--------|---------------------------|--------|------------------| | Sample | | Depth | Field | | | | Location | Sample Designation | (feet) | Duplicates | MS/MSD | Analytical Suite | | HR-CCRI-GP71 | HR-CCRI-GP71-SS-SJ0199-REG | 0-1 | HR-CCRI-GP71-SS-SJ0200-FD | | Lead, Only | | HR-CCRI-GP72 | HR-CCRI-GP72-SS-SJ0201-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP73 | HR-CCRI-GP73-SS-SJ0202-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP74 | HR-CCRI-GP74-SS-SJ0203-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP75 | HR-CCRI-GP75-SS-SJ0204-REG | 0-1 | HR-CCRI-GP75-SS-SJ0205-FD | | Lead, Only | | HR-CCRI-GP76 | HR-CCRI-GP76-SS-SJ0206-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP77 | HR-CCRI-GP77-SS-SJ0207-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP78 | HR-CCRI-GP78-SS-SJ0208-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP79 | HR-CCRI-GP79-SS-SJ0209-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP80 | HR-CCRI-GP80-SS-SJ0210-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP81 | HR-CCRI-GP81-SS-SJ0211-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP82 | HR-CCRI-GP82-SS-SJ0212-REG | 0-1 | | | Lead, Only | #### Surface Soil and Subsurface Soil Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcels Fort McClellan, AL (Page 10 of 10) | | | Sample | QA/Q | | | |--------------------|----------------------------|-----------------|---------------------------|--------|------------------| | Sample
Location | Sample Designation | Depth
(feet) | Field
Duplicates | MS/MSD | Analytical Suite | | HR-CCRI-GP83 | HR-CCRI-GP83-SS-SJ0213-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP84 | HR-CCRI-GP84-SS-SJ0214-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP85 | HR-CCRI-GP85-SS-SJ0215-REG | 0-1 | HR-CCRI-GP85-SS-SJ0216-FD | | Lead, Only | | HR-CCRI-GP86 | HR-CCRI-GP86-SS-SJ0217-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP87 | HR-CCRI-GP87-SS-SJ0218-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP88 | HR-CCRI-GP88-SS-SJ0219-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP89 | HR-CCRI-GP89-SS-SJ0220-REG | 0-1 | | | Lead, Only | | HR-CCRI-GP90 | HR-CCRI-GP90-SS-SJ0221-REG | 0-1 | | | Lead, Only | a First subsurface soil sample in this boring to be collected 1 to 12 feet below ground surface (bgs). Explosives - Nitroaromatic/Nitramine Explosives FD - Field duplicate. MS/MSD - Matrix spike/matrix spike duplicate. QA/QC - Quality assurance/quality control. PCB - Polychlorinated biphenyl REG - Field sample. TAL - Target analyte list. TCL - Target compound list. SVOCs - Semivolatile organic compounds. VOCs - Volatile organic compounds. b Second subsurface soil sample to be collected from different depth interval below the first subsurface soil sample so as to collect 2 discrete subsurface soil samples. c Full Suite of Analyses -Analyses include TCL VOCs, TCL SVOCs, TAL Metals, and Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's ## Groundwater Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcel Fort McClellan, Calhoun County, Alabama (Page 1 of 2) | | | | QA/Q0 | Samples | | |-----------------|----------------------------|---------------|---------------------------|---------|---| | Sample Location | Sample Designation | Sample Matrix | Field Duplicates | MS/MSD | Analytical Suite | | HR-94Q-MW01 | HR-94Q-MW01-GW-SJ3001-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-94Q-MW02 | HR-94Q-MW02-GW-SJ3002-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-95Q-MW01 | HR-95Q-MW01-GW-SJ3003-REG | Groundwater | HR-95Q-MW01-GW-SJ3004-FD | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's
 | HR-95Q-MW02 | HR-95Q-MW02-GW-SJ3005-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-95Q-MW03 | HR-95Q-MW03-GW-SJ3006-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-96Q-MW01 | HR-96Q-MW01-GW-SJ3007-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-131Q-MW01 | HR-131Q-MW01-GW-SJ3008-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-144Q-MW01 | HR-144Q-MW01-GW-SJ3009-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-145Q-MW01 | HR-145Q-MW01-GW-SJ3010-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-145Q-MW02 | HR-145Q-MW02-GW-SJ3011-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-146Q-MW01 | HR-146Q-MW01-GW-SJ3012-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-146Q-MW02 | HR-146Q-MW02-GW-SJ3013-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-147Q-MW01 | HR-147Q-MW01-GW-SJ3014-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-147Q-MW02 | HR-147Q-MW02-GW-SJ3015-REG | Groundwater | HR-147Q-MW02-GW-SJ3016-FD | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | ## Groundwater Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Parcel Fort McClellan, Calhoun County, Alabama (Page 2 of 2) | | | | QA/Q0 | C Samples | | |-----------------|----------------------------|---------------|---------------------------|-------------------------------|---| | Sample Location | Sample Designation | Sample Matrix | Field Duplicates | MS/MSD | Analytical Suite | | HR-148Q-MW01 | HR-148Q-MW01-GW-SJ3017-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW01 | HR-CCRI-MW01-GW-SJ3018-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW02 | HR-CCRI-MW02-GW-SJ3019-REG | Groundwater | | HR-CCRI-MW02-GW-RH3019-MS/MSD | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW03 | HR-CCRI-MW03-GW-SJ3020-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW04 | HR-CCRI-MW04-GW-SJ3021-REG | Groundwater | , | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW05 | HR-CCRI-MW05-GW-SJ3022-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW06 | HR-CCRI-MW06-GW-SJ3023-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW07 | HR-CCRI-MW07-GW-SJ3024-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW08 | HR-CCRI-MW08-GW-SJ3025-REG | Groundwater | HR-CCRI-MW08-GW-SJ3026-FD | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW09 | HR-CCRI-MW09-GW-SJ3027-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | | HR-CCRI-MW10 | HR-CCRI-MW10-GW-SJ3028-REG | Groundwater | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Herbicides, Pesticides and PCB's | FD - Field duplicate. MS/MSD - Matrix spike/matrix spike duplicate. QA/QC - Quality assurance/quality control. REG - Field sample. TAL - Target analyte list. TCL - Target compound list. SVOCs - Semivolatile organic compounds. VOCs - Volatile organic compounds. #### Surface Water and Sediment Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Ft. McClellan, Alabama (Page 1 of 3) | | T | | C Samples | | | | |--------------------|--|------------------------|------------------------|--|--|--| | Sample
Location | Sample Designation | Sample
Matrix | Sample
Depth (feet) | Field
Duplicates | MS/MSD | Analytical Suite | | HR-CCRI-SW/SD01 | HR-CCRI-SW/SD01-SW-SJ2001-REG HR-CCRI-SW/SD01-SD-SJ1001-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD02 | HR-CCRI-SW/SD02-SW-SJ2002-REG
HR-CCRI-SW/SD02-SD-SJ1002-REG | Surface water sediment | N/A
0-0.5 | HR-CCRI-SW/SD02-SW-SJ2003-FD
HR-CCRI-SW/SD02-SD-SJ1003-FD | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD03 | HR-CCRI-SW/SD03-SW-SJ2004-REG
HR-CCRI-SW/SD03-SD-SJ1004-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD04 | HR-CCRI-SW/SD04-SW-SJ2005-REG
HR-CCRI-SW/SD04-SD-SJ1005-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD05 | HR-CCRI-SW/SD05-SW-SJ2006-REG
HR-CCRI-SW/SD05-SD-SJ1006-REG | Surface water sediment | N/A
0-0.5 | | HR-CCRI-SW/SD05-SW-SJ2006-MS/MSD
HR-CCRI-SW/SD05-SD-SJ1006-MS/MSD | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD06 | HR-CCRI-SW/SD06-SW-SJ2007-REG HR-CCRI-SW/SD06-SD-SJ1007-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD07 | HR-CCRI-SW/SD07-SW-SJ2008-REG
HR-CCRI-SW/SD07-SD-SJ1008-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals, Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's. (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD08 | HR-CCRI-SW/SD08-SW-SJ2009-REG
HR-CCRI-SW/SD08-SD-SJ1009-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals, Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's. (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD09 | HR-CCRI-SW/SD09-SW-SJ2010-REG
HR-CCRI-SW/SD09-SD-SJ1010-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | ## Surface Water and Sediment Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Ft. McClellan, Alabama (Page 2 of 3) | | T The state of | | | | | | |--------------------
--|------------------------|------------------------|---|--|--| | Sample
Location | Sample Designation | Sample
Matrix | Sample
Depth (feet) | Field Duplicates | C Samples MS/MSD | Analytical Suite | | HR-CCRI-SW/SD10 | HR-CCRI-SW/SD10-SW-SJ2011-REG HR-CCRI-SW/SD10-SD-SJ1011-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD11 | HR-CCRI-SW/SD11-SW-SJ2012-REG HR-CCRI-SW/SD11-SD-SJ1012-REG | Surface water sediment | N/A
0-0.5 | | HR-CCRI-SW/SD11-SW-SJ2012-MS/MSD
HR-CCRI-SW/SD11-SD-SJ1012-MS/MSD | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD12 | HR-CCRI-SW/SD12-SW-SJ2013-REG
HR-CCRI-SW/SD12-SD-SJ1013-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD13 | HR-CCRI-SW/SD13-SW-SJ2014-REG HR-CCRI-SW/SD13-SD-SJ1014-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD14 | HR-CCRI-SW/SD14-SW-SJ2015-REG
HR-CCRI-SW/SD14-SD-SJ1015-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD15 | HR-CCRI-SW/SD15-SW-SJ2016-REG HR-CCRI-SW/SD15-SD-SJ1016-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD16 | HR-CCRI-SW/SD16-SW-SJ2017-REG HR-CCRI-SW/SD16-SD-SJ1017-REG | Surface water sediment | N/A
0-0.5 | HR-CCRI-SW/SD16-SW-SJ20018-FD HR-CCRI-SW/SD16-SD-SJ10018-FD | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size | | HR-CCRI-SW/SD17 | HR-CCRI-SW/SD17-SW-SJ2019-REG HR-CCRI-SW/SD17-SD-SJ1019-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD18 | HR-CCRI-SW/SD18-SW-SJ2020-REG
HR-CCRI-SW/SD18-SD-SJ1020-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD19 | HR-CCRI-SW/SD19-SW-SJ2021-REG
HR-CCRI-SW/SD19-SD-SJ1021-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD20 | HR-CCRI-SW/SD20-SW-SJ2022-REG
HR-CCRI-SW/SD20-SD-SJ1022-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's.
(Also for Sediment - TOC and Grain Size) | #### Surface Water and Sediment Sample Designations and QA/QC Sample Quantities Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Ft. McClellan, Alabama (Page 3 of 3) | | | T | | | | | |-----------------|---|------------------------|--------------|------------------------------|--------|---| | Sample | | Sample | Sample | QA/QC S | | 1 | | Location | Sample Designation | Matrix | Depth (feet) | Duplicates | MS/MSD | Analytical Suite | | HR-CCRI-SW/SD21 | HR-CCRI-SW/SD21-SW-SJ2023-REG | Surface water | N/A | | | TCL VOCs, TCL SVOCs, TAL Metals, Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's. | | | HR-CCRI-SW/SD21-SD-SJ1023-REG | sediment | 0-0.5 | | | (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD22 | HR-CCRI-SW/SD22-SW-SJ2024-REG | Surface water | N/A | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's. | | | HR-CCRI-SW/SD22-SD-SJ1024-REG | sediment | 0-0.5 | | | (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD23 | HR-CCRI-SW/SD23-SW-SJ2025-REG HR-CCRI-SW/SD23-SD-SJ1025-REG | Surface water | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals, Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's. (Also for Sediment - TOC and Grain Size) | | | 11K-CCK1-3VV/3D23-3D-331023-KEG | sediment | 0-0.5 | | | | | HR-CCRI-SW/SD24 | HR-CCRI-SW/SD24-SW-SJ2026-REG | Surface water | N/A | | | TCL VOCs, TCL SVOCs, TAL Metals, Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's. | | | HR-CCRI-SW/SD24-SD-SJ1026-REG | sediment | 0-0.5 | | | (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD25 | HR-CCRI-SW/SD25-SW-SJ2027-REG | Surface water | N/A | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's. | | | HR-CCRI-SW/SD25-SD-SJ1027-REG | sediment | 0-0.5 | | | (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD26 | HR-CCRI-SW/SD26-SW-SJ2028-REG | Surface water | N/A | | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's. | | | HR-CCRI-SW/SD26-SD-SJ1028-REG | sediment | 0-0.5 | | | (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD27 | HR-CCRI-SW/SD27-SW-SJ2029-REG | Surface water | N/A | | | TCL VOCs, TCL SVOCs, TAL Metals, Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's. | | | HR-CCRI-SW/SD27-SD-SJ1029-REG | sediment | 0-0.5 | | | (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD28 | HR-CCRI-SW/SD28-SW-SJ2030-REG | Surface water | N/A | HR-CCRI-SW/SD28-SW-SJ2031-FD | | TCL VOCs, TCL SVOCs, TAL Metals,
Nitroaromatic/Nitramine Explosives,
Pesticides, Herbicides and PCB's. | | | HR-CCRI-SW/SD28-SD-SJ1030-REG | sediment | 0-0.5 | HR-CCRI-SW/SD28-SD-SJ1031-FD | | (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD29 | HR-CCRI-SW/SD29-SW-SJ2032-REG HR-CCRI-SW/SD29-SD-SJ1032-REG | Surface water sediment | N/A
0-0.5 | | | TCL VOCs, TCL SVOCs, TAL Metals, Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's. (Also for Sediment - TOC and Grain Size) | | HR-CCRI-SW/SD30 | | Surface water | N/A | | | TCL VOCs, TCL SVOCs, TAL Metals, Nitroaromatic/Nitramine Explosives, Pesticides, Herbicides and PCB's. | | | HR-CCRI-SW/SD30-SD-SJ1033-REG | sediment | 0-0.5 | | | (Also for Sediment - TOC and Grain Size) | FD - Field duplicate. SVOCs - Semivolatile organic compounds. MS/MSD - Matrix spike/matrix spike duplicate. TAL - Target analyte list. N/A - Not applicable TCL - Target compound list. QA/QC - Quality assurance/quality control. TOC - Total organic carbon. REG - Field sample. KN314040\CCR\CCRITBLS4-4,4-5,4-6,.xls(Table 4-6)\4/29/03(5:10 PM) VOCs - Volatile organic compounds. Table 4-7 ### Analytical Samples for the Remedial Investigation Former Choccolocco Corridor Ranges, Parcels 94Q, 95Q, 96Q, 97Q, and Associated Ranges Fort McClellan, Calhoun County, Alabama | | | | | Field Samples | | | | EMAX | | | |
---|--|------------------|-------------|-------------------|---|-----------------------------|---------------|-------------|-------------|------------------|-----------| | | Analysis | Sample | TAT | No. of Sample | No. of | No. of Field | Field | MS/MSD | Trip Blank | Eq. Rinse | Total No. | | Parameters | Method | Matrix | Needed | Points | Events | Samples | Dups (10%) | (5%) | (1/ship) | (1/wk/matrix) | Analysis | | Former Choccolocco
100 subsurface soil s | • | | samples (25 | 5 groundwater an | d 30 surfa | ace water sam | oles) and 230 | soil matrix | samples (10 | 0 surface soil s | samples, | | TCL VOCs | 8260B | water | normal | 55 | 1 | 55 | 6 | 3 | 28 | 3 | 98 | | TCL SVOCs | 8270C | water | normal | 55 | 1 | 55 | 6 | 3 | 0 | 3 | 70 | | TAL Metals | 6010B/7000 | water | normal | 55 | 1 | 55 | 6 | 3 | 0 | 3 | 70 | | Explosives | 8330 | water | normal | 55 | 11 | 55 | 6 | 3 | 0 | 3 | 70 | | Cl Pesticides | 8081 | water | normal | 55 | 1 | 55 | 6 | 3 | 0 | 3 | 70 | | Op Pesticides | 8141A | water | normal | 55 | 1 | 55 | 6 | 3 | 0 | 3 | 70 | | Cl Herbicides | 8151 | water | normal | 55 | 11 | 55 | 6 | 3 | 0 | 3 | 70 | | PCB's | 8082 | water | normal | 55 | 1 | 55 | 6 | 3 | 0 | 3 | 70 | | TCL VOCs | 8260B | soil | normal | 90 | 1 | 90 | 9 | 5 | 0 | 5 | 114 | | TCL SVOCs | 8270C | soil | normal | 90 | 11 | 90 | 9 | 5 | 0 | 5 | 114 | | TAL Metals | 6010B/7000 | soil | normal | 150 | 1 | 150 | 15 | 8 | 0 | 8 | 189 | | Explosives | 8330 | soil | normal | 150 | 1 | 150 | 15 | 8 | 0 | 8 | 189 | | CI Pesticides | 8081 | soil | normal | 90 | 11 | 90 | 9 | 5 | 0 | 5 | 114 | | Op Pesticides | 8141A | soil | normal | 90 | 1 | 90 | 9 | 5 | 0 | 5 | 114 | | Cl Herbicides | 8151 | soil | normal | 90 | 1 | 90 | 9 | 5 | 0 | 5 | 114 | | PCB's | 8082 | soil | normal | 90 | 1 | 90 | 9 | 5 | 0 | 5 | 114 | | Lead | 6010B | soil | normal | 80 | 1 | 80 | 8 | 4 | 0 | 4 | 100 | | XRF Metals ^b | 6010B | soil | normal | 35 | 11 | 0 | 0 | 0 | 0 | 00 | 0 | | Also, sediment samp | les will be analyzed f | or the following | g paramete | rs: | *************************************** | III BANNAN YANGA MARKAN ARA | | | | | | | Total Organic Carbon | 9060 | sediment | normal | 30 | 1 | 30 | 0 | 0 | 0 | 0 | 30 | | Grain size | ASTM D421/D422 | sediment | normal | 30 | 11 | 30 | 0 | 0 | 0 | 00 | 30 | | | CONTROL CONTRO | | | | | | | | | | | | | | Former Cho | ccolocco (| Corridor Ranges S | Subtotal: | 1420 | 140 | 74 | 28 | 74 | 1810 | ^aField duplicate, QA split, and MS/MSD samples were calculated as a percentage of the field samples collected per site and were rounded to the nearest whole number. Trip blank samples will be collected with water matrix samples for VOC analysis only. Assumed four field samples per day to estimate trip blanks. Equipment blanks will be collected once per event whenever sampling equipment is field decontaminated and re-used. They will be repeated weekly for sampling events that last more than 1 week. Assumed 20 field samples will be collected per week to estimate number of equipment blanks. ASTM - American Socienty of Testing and Materials CI - Chlorinated Explosives - Nitroaromatic and Nitramine. MS/MSD - Matrix spike/matrix spike duplicate. Op - Organophosphorus PCB - Polychlorinated biphenyl QA/QC - Quality assurance/quality control. SVOCs - Semivolatile organic compounds. TAL - Target analyte list. TAT - Turn-around time TCL - Target compound list. VOCs - Volatile organic compounds. Ship samples to: EMAX Laboratories, Inc. 1835 205th Street Torrance, CA 90501 Attn: Elizabeth McIntyre Tel: 310-618-8889 Fax: 310-618-0818 b XRF Metals - Arsenic, antimony, copper, lead, and zinc; represents approximately 5% of total number of proposed XRF screening locations.